В основании пирамиды лежит правильный треугольник ABC со стороной равной 6см.
S(осн.)= =9√3 см².
Высота правильной пирамиды падает в центр основания. Поэтому если DH высота пирамиды, а DM - апофема, то MH - радиус вписанной окружности в правильный треугольник. Т.к. по теореме о 3ёх перпендикулярах HM⊥AC.
=√3 см
В прямоугольном ΔDHM (∠H=90°) найдём гипотенузу DM по теореме Пифагора.
=√147 см
Боковые грани правильной пирамиды это равные треугольники.
S(бок.)= =9√147 см²
S(полн.) = S(осн.)+S(бок.) = 9√3 + 9√147 см²
ответ: 9√3 + 9√147 см².
И тут мы заметим, что площадь S=24 ровно в 4 раза меньше, чем площадь CDF. Если S - площадь NQT (у тебя не сказано, я типа догадываюсь), то соответственно длины всех сторон будут в корень(4) = 2 раза меньше, чем у CDF, а именно: 15, 13 и 4. Выбирай 15 как наибольшую, и получаешь такой ответ.
Ну, по крайней мере я так думаю, что решил правильно.