Насколько мне помнится, то тут нужно решать объяснениями, если да то: Пусть O — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности — это точка пересечения биссектрис, поэтому — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём
Отрезки и OK равны как радиусы вписанной в треугольник ABC окружности, то есть Рассмотрим треугольники ALO и AOK, они прямоугольные, углы LAO и OAK равны, AO — общая, следовательно, треугольники равны, откуда Аналогично из равенства треугольников COM и COK получаем а из равенства треугольников BOL и BOM — Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:
Площадь параллелограмма равна произведению высоты на основание:
Рассмотрим треугольники ABC и ACD, AB равно CD, AD равно BC, углы ABC и ADC равны, следовательно, треугольники ABC и ACD равны. Поэтому площадь треугольника ABC равна половине площади параллелограмма т.е 168
R = 7; радиус вписанной в треугольник ABC окружности. 1) Сумма расстояний от точки O до BС и AD равна 7 + 8 = 15; это - высота параллелограмма, и - одновременно - высота треугольника ABC к стороне ВС; я обозначу эту высоту буквой h; h = 15; 2) Если обозначить точки касания сторон треугольника ABC с вписанной окружностью K - для AB, L - для BC, M - для AC, то AK = AM = 24 (треугольник AOK имеет катет 7 и гипотенузу 25, то есть это Пифагоров треугольник 7, 24, 25) Легко видеть, что ПОЛУпериметр треугольника ABC равен p = AK + BL + CL = 24 + BC; 3) теперь площадь треугольника ABC можно выразить двумя S = p*r = 7*(24 + BC) = h*BC/2 = 15*BC/2; 14*(24 + BC) = 15*BC; BC = 336; S = 15*336 = 5040;
Насколько мне помнится, то тут нужно решать объяснениями, если да то: Пусть O — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности — это точка пересечения биссектрис, поэтому — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём
Отрезки и OK равны как радиусы вписанной в треугольник ABC окружности, то есть Рассмотрим треугольники ALO и AOK, они прямоугольные, углы LAO и OAK равны, AO — общая, следовательно, треугольники равны, откуда Аналогично из равенства треугольников COM и COK получаем а из равенства треугольников BOL и BOM — Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:
Площадь параллелограмма равна произведению высоты на основание:
Рассмотрим треугольники ABC и ACD, AB равно CD, AD равно BC, углы ABC и ADC равны, следовательно, треугольники ABC и ACD равны. Поэтому площадь треугольника ABC равна половине площади параллелограмма т.е 168