Даны координаты точек A(1;4), B(1;1) , C(4;7).
Уравнение прямой, включающей сторону ВС:
Вектор BC : (4-1=3; 7-1=6) = (3; 6).
(x - 1)/3 = (у - 1)/6, после сокращения знаменателей на 2, получаем:
(x - 1)/1 = (у - 1)/2 это каноническое уравнение стороны ВС.
Или 2х - 2 = у - 1 или 2х - у - 1 = 0 общее уравнение.
у = 2х - 1 с угловым коэффициентом. к(ВС) = 2.
Угловой коэффициент перпендикуляра АН к стороне ВС равен:
к(АН) = -1/к(ВС) = -1/2.
Уравнение АН: у = (-1/2)х + в. Для определения параметра в подставим координаты точки А: 4 = (-1/2)*1 + в, отсюда в = 4 + (1/2) = 9/2.
Уравнение АН: у = (-1/2)х + (9/2).
Координаты точки Н находим как точки пересечения прямых АН и ВС.
(-1/2)х + (9/2) = 2х - 1,
(5/2)х = (11/2), отсюда находим х(Н) = 11/5 = 2,2.
у(Н) = 2*(11/5)-1 = 17/5 = 3,4.
ответ: Н(2,2; 3,4).
1. Чтобы определить координаты точки на координатной прямой, надо посчитать, сколько единичных отрезков от начала отсчета до данной точки. Если точка справа от начала отсчета, то координата положительная, если слева - отрицательная.
Например: А(4), В( - 3).
2. Чтобы определить координаты точки на координатной плоскости, надо провести из точки перпендикуляры к осям координат (спроецировать точку на оси координат), а потом посчитать количество единичных отрезков до основания перпендикуляра.
Если точка находится в правой полуплоскости, координата х положительна, в левой - отрицательна. Если точка находится в верхней полуплоскости, то координата у положительна, в нижней - отрицательна.
В скобках первой указывается координата х.
Например: А(3 ; - 2), В(- 1; 4).
24
Объяснение:
По теореме Пифагора находим другой катет
Он равен: корень(10^2-6^2)=корень(100-36)=корень(64)=8
Тогда S=8*6/2=24