Если нам известны стороны:
Проведем две медианы к боковым сторонам треугольника.
Так как он равнобедренный, медианы эти равны и отсекают от исходного треугольника два меньших, равных между собой.
Угол при основании неизвестен, поэтому обозначим его α и его косинус - cosα
Выразим медиану одного из образовавшихся треугольников по теореме косинусов.
Чтобы найти косинус угла при основании, применим теорему косинусов к данному в условии задачи треугольнику, стороны которого известны.
Подставив найденное значение cosα в уравнение медианы, найдем ее длину.
Контретное решение зависит от того, какие даны величины в условии задачи.
1. уравнение прямой: y=kx+b
подставим координаты в уравнение: -3=2k+b и 1=4k+b
из второго уравнения: b=1-4k
теперь подставим b в первое уравнение: -3=2k+1-4k => -3-1=2k-4k => -4=-2k =>k=2
теперь подставим k во второе уравнение: 1=4*2+b
b=1-8
b=-7
следовательно уравнение принимает вид: y=2x-7
2. теперь подставим y=0 . получается 0=2*х-7
2х=7
х=3,5 значит (3,5; 0)
Подробнее - на -
М = В
Объяснение:
От перестановки слагаемых сумма не меняется.
А1С1 + С1В1 = А1В1
А1В1 + ВА = 0, потому что эти векторы противоположно направлены.
Точка М = В, потому что вектор ВМ = 0.