М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
yjsts
yjsts
30.11.2020 15:21 •  Геометрия

Основанием пирамиды mabc служит прямоугольный треугольник abc (угол c=90) bc=a угол a=30 боковые ребра наклонены к основанию под углом 60 найдите высоту пирамиды

👇
Ответ:
dkusnarev98
dkusnarev98
30.11.2020
Если в пирамиде боковые ребра наклонены к основанию под одним углом (или равны), то высота проецируется в центр окружности, описанной около основания.
Центр окружности, описанной около прямоугольного треугольника, - середина гипотенузы.
Итак, О - середина гипотенузы АВ, МО - высота пирамиды, ОА = ОВ = ОС - проекции боковых ребер на плоскость основания, ∠МАО = ∠МАВ = ∠МАС = 60° - угол между боковыми ребрами и основанием.

АВ = 2ВС = 2а по свойству катета, лежащего напротив угла в 30°.
ОА = ОВ = а/2
ΔМВО: ∠МОВ = 90°, tg∠MBO = MO/OB.
MO = OB · tg 60° = a/2 · √3 = a√3/2
4,8(71 оценок)
Открыть все ответы
Ответ:
настячччч
настячччч
30.11.2020
Пусть РАВС - данная пирамида, Р-вершина, РО = √13 см - высота,
РА=РВ=РС=6 см

1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)

2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3  = √69 (см) - это длина стороны основы.

3. Находим периметр основы.
Р=3а
Р=3√69 см

4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)

5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)

ответ. 11,25 √23 см².
4,4(5 оценок)
Ответ:
ivan497
ivan497
30.11.2020

6 ед.

Объяснение:

В правильной усеченной пирамиде в основаниях лежат правильные многоугольники, стороны которых соответственно равны между собой. Боковые грани такой пирамиды - равные между собой равнобокие трапеции. Радиусы окружностей, вписанных в основания, проведенные в точки касания сторон оснований с соответственной окружностью Н и Н1, перпендикулярны к сторонам оснований по свойству радиусов, проведенных в точки касания.

Проведем перпендикуляр из точки касания Н1М верхнего основания на нижнее основание. Тогда отрезок Н1Н перпендикулярен стороне основания АВ по теореме о трех перпендикулярах, то есть является искомой высотой боковой грани.

В прямоугольном треугольнике НН1М угол ∠НН1М = 30° по сумме острых углов. Следовательно, НН1 = 2·НМ по свойству катета, лежащего против угла 30°.

НМ = ОН - О1Н1 = 8-5 = 3 ед.

Высота боковой грани НН1 = 6 ед.

4,5(75 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ