1). Построим описанную окружность с центром в т. М Угол ∠АМС - центральный, опирающийся на ту же дугу АС, что и угол ∠АВС. Следовательно: ∠АМС = 2*∠АВС = 2*15 = 30°
В ΔМНС: CH = MC*sin30° = MC/2
Так как АВ = 2*МС, то: СН:АВ = МС/2 : 2MC = 1/4 CH:AB = 1:4
2). В ΔАВС: cos∠ABC = BC/AB = BC/2MC => => BC = 2MC*cos15°
Обозначим cos(альфа) = V2 / 10, a и b ---основания трапеции... sin(альфа) = V ( 1 - (cos(альфа))^2 ) = V ( 1 - 2/100 ) = V98 / 10 = 7V2 / 10 если построить высоту трапеции, то получим прямоугольный треугольник, в котором гипотенуза = 10, один катет = h = 10*sin(альфа) = 10*7V2 / 10 = 7V2 второй катет = b - (b-a)/2 = (b+a)/2 = 10*cos(альфа) = V2 Sтрапеции = h*(a+b)/2 = 7V2 * V2 = 14 (((здесь интересный момент в том, что и не нужно совсем отдельно находить основания трапеции... две проведенные высоты трапеции отрезают от трапеции два равных прямоугольных треугольника --- т.к. трапеция равнобедренная в этих треугольниках один катет --- высота, второй катет = (b-a)/2 и можно сразу найти нужную для площади (a+b)/2
в) S=30
д) S= скорее всего не хватает данных
ж) S=60
и)
л)
Объяснение:
в) По формуле: площадь трапеции равна полусумме оснований на высоту. Полусумма оснований равна длине серединной линии трапеции.
S=6*5
S=30
д) скорее всего не хватает данных
ж) По формуле площади трапеции, когда диагонали пересекаются по 90°
S=5*12
S=60
и) По формуле площади трапеции
л) По формуле площади трапеции
Подставим известные данные в эту формулу