М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
deniskalopatin
deniskalopatin
29.11.2021 19:54 •  Геометрия

Найдите объем конуса, осевым сечением которого является равнобедренный прямоуголый треугольник с гипотенузой 6 корней из 2.

👇
Ответ:
Yutik
Yutik
29.11.2021

Так как треугольник равнобедренный прямоугольный, то углы при гипотенузе будут равны по 45 градусов.

Откуда находим катеты, гипотенуза есть диаметр основания, а катеты образующие

 AB=AC=CB*cos45=6\sqrt2 * \frac{\sqrt2}{2}=6где CB - гипотенуза

 Высота равна:

 h=\sqrt{6^2-(3\sqrt2)^2}=\sqrt{18}

 Объем конуса:

V=\frac{1}{3}S*h  S- площадь основания, h - высота

 Получаем:

 V=\frac{1}{3}S*h=\frac13 \pi R^2h=\frac13\pi (3\sqrt{2})^2*\sqrt18=18\sqrt{18} \pi

4,7(65 оценок)
Открыть все ответы
Ответ:
thrasher7777
thrasher7777
29.11.2021
Правильный тетраэдр - правильный многогранник (пирамида), все грани которого правильные треугольники
V_{piramid} = \frac{1}{3}* S_{osn} *H
S_{osn}= \frac{ a^{2} \sqrt{3} }{4}
a - длина ребра тетраэдра
Н=?
пусть MABC правильный тетраэдр. МО=Н - высота тетраэдра
О - точка пересечения медиан, высот, биссектрис правильного треугольника (основания пирамиды), которые в точке пересечения делятся в отношении 2:1, считая от вершины 
высота правильного треугольника вычисляется по формуле:
h_{a} = \frac{a \sqrt{3} }{2}
h_{a} = \frac{(6 \sqrt{2} )* \sqrt{3} }{2} 

 h_{a} =3 \sqrt{6}
OA= \frac{2}{3}* h_{a}
OA=2√6
прямоугольный ΔМОА:
Гипотенуза МА=6√2 см
катет АО=2√6 см
катет МО=Н, найти по теореме Пифагора:
МО²=(6√2)²-(2√6)², МО²=√48. МО=4√3 см. Н=4√3 см
V_{piram} = \frac{1}{3}* \frac{(6 \sqrt{2} ) ^{2} \sqrt{3} }{4}*4 \sqrt{3} =72


 V_{piram}=72 cm ^{3}
4,8(32 оценок)
Ответ:
elnur4ik2002
elnur4ik2002
29.11.2021
Правильный тетраэдр - правильный многогранник (пирамида), все грани которого правильные треугольники
V_{piramid} = \frac{1}{3}* S_{osn} *H
S_{osn}= \frac{ a^{2} \sqrt{3} }{4}
a - длина ребра тетраэдра
Н=?
пусть MABC правильный тетраэдр. МО=Н - высота тетраэдра
О - точка пересечения медиан, высот, биссектрис правильного треугольника (основания пирамиды), которые в точке пересечения делятся в отношении 2:1, считая от вершины 
высота правильного треугольника вычисляется по формуле:
h_{a} = \frac{a \sqrt{3} }{2}
h_{a} = \frac{(6 \sqrt{2} )* \sqrt{3} }{2} 

 h_{a} =3 \sqrt{6}
OA= \frac{2}{3}* h_{a}
OA=2√6
прямоугольный ΔМОА:
Гипотенуза МА=6√2 см
катет АО=2√6 см
катет МО=Н, найти по теореме Пифагора:
МО²=(6√2)²-(2√6)², МО²=√48. МО=4√3 см. Н=4√3 см
V_{piram} = \frac{1}{3}* \frac{(6 \sqrt{2} ) ^{2} \sqrt{3} }{4}*4 \sqrt{3} =72


 V_{piram}=72 cm ^{3}
4,8(21 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ