Явная опечатка. не 1 см, а 11 см. т.к. с такими данными не существует треугольника. исправьте условие.
теперь решение.
Если соединить середины сторон данного треугольника, то получите треугольник, состоящий их средних линий данного треугольника.
Каждая средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны, поэтому стороны треугольника, вершинами которого являются середины сторон данного треугольника, будут 5/2=2.5/см/, 7/2=3.5/см/, 11/2=5.5/см/
Через две пересекающиеся прямые можно провести ровно одну плоскость. Две прямые из условия лежат в некоторой плоскости a. Пусть третья прямая пересекает каждую из них и не проходит через точку A их пересечения. Тогда у третьей прямой есть хотя бы две общие точки с плоскостью a (как раз эти точки пересечения). Известно, что прямая, имеющая с плоскостью хотя бы две общие точки, лежит в этой плоскости. Тогда третья прямая также лежит в а. Следовательно, какую бы прямую, пересекающую две данные прямые и не проходящую через А мы ни выбрали, она будет целиком лежать в плоскости а, что и требовалось доказать.
Явная опечатка. не 1 см, а 11 см. т.к. с такими данными не существует треугольника. исправьте условие.
теперь решение.
Если соединить середины сторон данного треугольника, то получите треугольник, состоящий их средних линий данного треугольника.
Каждая средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны, поэтому стороны треугольника, вершинами которого являются середины сторон данного треугольника, будут 5/2=2.5/см/, 7/2=3.5/см/, 11/2=5.5/см/
ответ 2.5см, 3.5 см, 5.5 см.