Вправильной триугольной призме, диагональ боковой грани ровняеться 10см . найти боковую поверхность призмы, радиус круга описаного вокруг основы 2 корень из 3
Так как треугольная призма правильная, то в основании лежит правильный(равносторонний) треугольник, который вписан в окружность. Радиус описаной окружности и сторона треугольника связаны соотношением: R=V3\3 *a, отсюда находим сторону треугольника: а=(3*2V3)/V3=6.
Боковая поверхрость призмы состоит из трех равных прямоугольников, в которых известны диагональ и одна из сторон. Найдем другую сторону прямоугольника, используя теорему Пифагора: h^2+6^2=10^2,
h^2= 100-36=64,
h=8..
Площадь боковой поверхности призмы равна 3 умножить на площадь прямоугольника со сторонами 6 и 8. S=3*6*8=144.
Треугольник АВС, ВМ-медиана, медианы делят треугольник на два равновеликих треугольника S ABM = S MBC=1/2 S ABC, треугольник АВМ, АК - медиана ВК=КМ, S ABK = S AKM =1/2 ABM =1/4 S ABC Проводим МН - параллельную АР, АР-средняя линия треугольника АРС =1/2АР, треугольник МВН , КР - средняя линия =1/2МН=1/4АР, АР=4КР, АК=АР-КР=4КР-КР=3КР, Проводим высоту ВТ - одинаковая для треугольника АВР и треугольника АВК, S АВР=1/2АР*ВТ=(4КР*ВТ)/2, S АВК=1/2АК*ВТ=(3КР*ВТ)/2 S ВКР=S АВР - S АВК = (КР*ВТ)/2, S АВК/S ВКР = ((3КР*ВТ)/2) / ((КР*ВТ)/2)=3/1 S ВКР = 1/3 S АКВ = (1/4 АВС)*(1/3)=1/12 S МКРС = S МВС - S ВКР = 1/2S АВС - 1/12S АВС=5/12 S АВС S АВК / S МКРС = 1/4 : 5/12 = 12/20=3/5
1.Основными геометрическими фигурами на плоскости являются точка и прямая. 2.Положение точки на каждом из лучей задается ее координатой. Чтобы отличить друг от друга координаты на этих лучах, условились ставить перед координатами на одном луче знак « + », а перед координатами на другом луче знак « — ». 3.В месте раздела плоскостей прерывается область интегрирования по площади и неопределенный интеграл вырождается в определенный. Разбиение разрывает непрерывную корреляцию между функцией и аргументами кривой, проходящей по обеим плоскостям, если вторая производная - не ноль.
Так как треугольная призма правильная, то в основании лежит правильный(равносторонний) треугольник, который вписан в окружность. Радиус описаной окружности и сторона треугольника связаны соотношением: R=V3\3 *a, отсюда находим сторону треугольника: а=(3*2V3)/V3=6.
Боковая поверхрость призмы состоит из трех равных прямоугольников, в которых известны диагональ и одна из сторон. Найдем другую сторону прямоугольника, используя теорему Пифагора: h^2+6^2=10^2,
h^2= 100-36=64,
h=8..
Площадь боковой поверхности призмы равна 3 умножить на площадь прямоугольника со сторонами 6 и 8. S=3*6*8=144.
ответ:144.