Сумма углов треугольника равна 180°. Так как углы при основании равнобедренного треугольника равны, то угол при вершине равен 180° - 2*30° = 180 - 60 = 120°.
Площадь треугольника равна:
S = 0.5 * AB * BC * sinB = 0.5 AB²sin120°, где AB = BC как боковые стороны.
Тогда AB² = 2S/sin120° = 2*4√3/(√3/2) = 16 ⇒ AB = 4
Теперь рассмотрим прямоугольный треугольник, который образован искомой высотой, одной из боковой сторон и половиной длины основания. Угол, противолежащий искомой высоте, равен 30° по условию. Тогда, по определению синуса, h = AB*sin30° = 4 * 0.5 = 2.
ответ: 2
Из т.С опустим перпендикуляр СЕ к стороне АД. АВСЕ - прямоугольник по построению, значит АЕ=ВС=4.
Из треугольника СДЕ: угол ДСЕ=180-СЕД-СДЕ=180-90-45=45. Значит треугольник СДЕ равнобедренный, значит СЕ=ЕД=х.
СД^2=CE^2+EД^2=х^2+х^2=2х^2=(2√3)^2. Отсюда х=√6=СЕ=ЕД. АД=АЕ+ЕД=ВС+ЕД=4+√6
S(меньшего основания)=пи*r^2= пи*ВС^2=3,14*4^2=50,24
S(большего основания)=пи*R^2= пи*АД^2=3,14*(4+√6)^2=69,08+25,12*√6=130,61
S(боковая)=пи*L*(r+R)=пи*СД*(ВС+АД)=3,14*2√3*(4+4+√6)=92,80
Все складываем и получаем
S=273,65