Опустим перпендикуляр из угла, соседнего с углом 60. Гипотенуза =7, какт против угла 30 градусов =3,5. Высота^2 по Пифагору равна 7^2-3,5^2 = 36,75.
Во втором прямоугольном треугольнике катет = 15-3,5 = 11,5. Находим гипотенузу, т.е. третью сторону треугольника
11,5^2+36,75 = 169. Третья сторона равна 13. Периметр равен 7+15+13 = 35см.
1 случай (с фото)
Пусть данная диагональ равна стороне, которой она перпендикулярна. Тоесть ВО=АО.
Тогда ∆АОВ равнобедренный с основанием АВ.
Углы при основании равнобедренного треугольника равны, тогда угол ОАВ=угол ОВА.
Исходя из этого: угол ОАВ+угол ОВА=2*угол ОАВ
Так как ВО перпендикулярно АО по условию, то угол ВОА=90°.
Следовательно ∆АОВ – прямоугольный с прямым углом АОВ.
Сумма острых углов в прямоугольном треугольнике равна 90°.
Составим уравнение:
Угол ОАВ+угол ОВА=90°
2*угол ОАВ=90°
Угол ОАВ=45°
Сумма углов при одной стороне параллелограмма равна 180°.
Следовательно: угол АОС=180°–угол ОАВ=180°–45°=135°
Противоположные углы параллелограмма равны.
Следовательно: угол ВСО=угол ОАВ=45°; угол СВА=угол АОС=135°
ответ: угол ВСО=угол ОАВ=45°; угол СВА=угол АОС=135°
2 случай (с фото №2)
Пусть данная диагональ ВО равна НЕперпендикулярной ей стороне. Тоесть ВО=АВ.
Так как ВО перпендикулярно АО по условию, то угол ВОА=90°.
Следовательно ∆АОВ – прямоугольный с прямым углом АОВ.
Пусть АВ=х, тогда ВО=х так же.
По теореме Пифагора в прямоугольном ∆АОВ:
АВ²=АО²+ВО²
х²=АО²+х²
х²–х²=АО²
АО=√0
АО=0
Так как длина отрезка всегда положительная величина, то получим что ∆АОВ не существует.
А значит второго случая так же не существует.
Тогда ответ – ответ на 1 случай.
по теореме косинусов
c^2 = a^2 +b^2 - 2 ab cos60 = 7^2 +15^2 -2*7*15*1/2 =169
c = 13 см
периметр P = a+b+c = 7+15+13 =35 см