25) Диагонали параллелограмма точкой пересечения делятся пополам, BO=OD=4. Параллелограмм, в котором диагональ является биссектрисой - ромб. ABCD - ромб, диагональ BD также является биссектрисой, угол между диагоналями прямой.
ADO=120/2=60
В треугольнике AOD катет OD лежит против угла 30 и равен половине гипотенузы AD.
AD=2OD =4*2 =8
P(ABCD)= 8*4 =32
24) Противоположные стороны параллелограмма равны, AB=CD=KD, △KDC - равнобедренный, DKC=DCK.
DKC=BCK=31 (накрест лежащие при параллельных)
D= 180-2*31 =118
Составим систему уравнений:
Прямая BC описывается уравнением
y=-0,2x+8,8
Прямая AD || BC, значит коэффициент b у них одинаковый, отличается только коэффициент с. Можем составить уравнение прямой, проходящей через точку A, параллельную BC
y=bx+c
2=-0,2*2+c
c=2,4
y=-0,2x+2,4
Проверка:
Прямая AB имеет вид y=bx+c
Составим систему уравнений:
Прямая AB описывается уравнением
y=3x-4
Прямая CD || AB, значит коэффициент b у них одинаковый, отличается только коэффициент с. Можем составить уравнение прямой, проходящей через точку С, параллельную АВ
y=bx+c
10=-6*3+c
c=28
y=3x+28
Координаты точки D:
-0,2x+2,4=3x+28
3,2x=-25,6
x=-8
y=3*(-8)+28=4
D(-8;4)
По точкам можно построить параллелограмм ABCD и убедиться в правильности решения