Пусть общая хорда AB , O₁ и O₂ центры окружностей ;O₁A=O₂A =r ,O₁O₂ =r. --- O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r. AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ? Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
Понятно, что против 8 и 10 острые углы :) а что против 12? не вдаваясь в подробности (теорему косинусов), скажем, что если сумма квадратов меньших равна квадрату большей стороны - тогда треуг. прямоуг. (у нас не так). если сумма квадратов меньших меньше квадрату большей стороны - тогда треуг. остроуг (у нас как раз так). если сумма квадратов меньших больше квадрата большей стороны - тогда треуг. тупоуг. (у нас не так). все это можно получить из теоремы косинусов - там косинус острого положительный, косинус прямого=0, косинус тупого отрицательный. у нас треуголник- остроугольный.
hvkjufkfj ifuririgtyv dyr6eysdyx furyeyee6ye6e6r ufueydedgggff 345