1. Аксиома – это очевидные положения геометрии, не требующие доказательств.
2. Через точку, не лежащую на данной прямой, проходит
а) только одна прямая, параллельная данной.
3. Не может быть следствием аксиомы или теоремы:
а) утверждение, не требующее доказательств.
4. Следствия аксиомы параллельных прямых:
б) если две прямые параллельны третьей прямой, то они параллельны друг другу.
в) если прямая пересекает одну из параллельных прямых, то она пересекает и другую.
г) если три прямые параллельны, то любые две из них параллельны друг другу.
5. Если через точку, лежащую вне прямой, проведено несколько прямых, то сколько из них пересекаются с исходной прямой?
б) все, кроме параллельной прямой.
6. Если одна из прямых, проходящих через точку, лежащую вне заданной прямой, параллельна этой прямой, то другие прямые, проходящие через точку, не могут быть ей параллельны, потому что
а) это противоречит аксиоме параллельных прямых.
Дана правильная четырехугольная пирамида SAВCD, сторона основания "а" и высота "Н" равны 2 см.
Эту задачу можно решит двумя геометрическим и 2) векторным.
1) Угол между плоскостью SAB и прямой АС - это угол между АС и её проекцией на плоскость SAB.
Апофема боковой грани А = √((a/2)² + H²) = √(1² + 2²) = √5.
Косинус угла наклона боковой грани к основанию равен: cos β = 1/√5.
Спроецируем точку С на плоскость SAB - пусть это точка Р.
ВР = a*cos β = 2*( 1/√5)= 2/√5.
Проекция АР = √(a² + BP²) = √(2² + ( 2/√5)²) = √(4 + (4/5)) = √(24/5).
Диагональ АС = 2√2 (по свойству гипотенузы в равнобедренном прямоугольном треугольнике).
Отрезок СР = a*sinβ.
Находим sinβ = √(1 - cos²β) = √(1 - (1/√5)²) = √(1 - (1/5)) = 2/√5.
СР = 2*(2/√5) = 4/√5.
Получили стороны треугольника, где угол САР и есть угол между АС и плоскостью SAB.
Решается по теореме косинусов.
cos CAP = ((√2)² + (√(24/5))² - (4/√5)²)/(2*√2*√(24/5)) = 0,774597.
Угол САР = 0,684719 радиан или 39,23152 градуса.