Плоскости сферы, без объяснения причины. Проведенной из точки На линии пересечения длина диаметра шара 4 2 а он плоскостью 450, Найдите длину линии пересечения.
Пускаем высоту из вершины. получаем прямоугольный треугольник со стороной 10 и 6 (т. к.) трапеция равнобедренная 12/2=6). по теореме Пифагора находим второй катет, который также является высотой трапеции. он равен 8. рассматривает другой прямоугольный треугольник где высота это катет, а диагональ- гипотенуза. по теореме пифагора находим так второй катет, который является оставшимся куском основания. он получается 15. дальше маленькое основание будет ровно (15+6)-12=9 площадь трапеции= основания на высоту =(21+9)/2*8=96
по теореме косинусов a²=b²+c²-2bccosA cosA=(b²+c²-a²)/2bc=804/924=67/77
sin²A=1-cos²A=1440/77²=36*40/77² sinA=4*√40/77
b²=a²+c²-2accosB cosB=(a²+c²-b²)/2ac=164/484=41/121 cosB=cos2*(B/2)
=cos²B/2-sin²B/2=1-2sin²(B/2) sin²B/2=(1-cosB)/2=40/121 sin(B/2)=√40/11
по теореме синусов:
BD/sinA=c/sinα=AD/sin(B/2)
BD/sinC=a/sin(180-α)=DC/sinB/2
берем вторые равенства и складываем sin(180-α)=sinα
(с+a)/sinα=(AD+DC)/sin(B/2)=b/sin(B/2)
sinα=(c+a)*sin(B/2)/b=33*√40/11*21=√40/7
по теореме синусов
с/sinα=BD/sinA
BD=c*sinA/sinα=22*4*√40*7/(77*√40)=8