1)г. 2)б. 3)а. 4)в. 5)я прикрепила картинку к этому заданию.Не забудь написать «Дано: треугольникABC; a=7;b=8;c=5. Найти : <А-?» ответ , кстати , в конце <А=60 градусов.(просто не поместилось.) 6)AB=10x
S=pr
p=13x+13x+10x2=18x
S=p(p−13x)(p−13x)(p−10x)‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√ — по формуле Герона.
7) если СК биссектриса, то по ее свойству если СЕ/СВ=3:1 то и КЕ:ВК=3:1 Обозначим ВК=у, КЕ=3у значит, ВЕ=4у т.к. угол ВОЕ центральный для угла С, то он=120 и тогда ∠ВОК=60 ВМ=ВО*sin 60 BM=8√3*√3/2=12 ВЕ=4у=24 ⇒ у=6 3у=3*6=18
8) 1. Теорема синусов для треугольника КОР KP/sin KOP=OP/sin OKP sin OKP=3*sqrt2*sqrt2/2/5=3/5 cos^2(OKP)=1-sin^2(OKP)=(4/5)^2 Т.к. КОР тупой, то ОКР острый, cos OKP=4/5 2. sin OPK=sin(180-KOP- OKP)=sin(KOP+OKP)=sin KOP*cos OKP+cos KOP*sin OKP sin OPK=sqrt2/2*(4/5-3/5)=sqrt2/10 3. S(KMP)=2*S(KOP)=OP*KP*sin OPK=3*sqrt2*5* sqrt2/10=3
9) Если диагонали трапеции перпендикулярны, то площадь можно найти по следующим формулам: S-Һв квадрате, где һ-высота или S-(a+b)в квадрате/4, где а иb -основания Воспользуемся последней формулой!Т к дана длина ср линии трапеции, то можно найти сумму длин оснований трапеци: ср линия3 1/2(а+b); 5%31/2(а+b); (а+b)-10см Найдем S- (а+b)в квадрате/4 %3D10в квадрате/ 4-25см2
№1
Дано: а=12 см, h=а/3
Найти: S
Решение
1) h= 12 см :3 = 4 см
2) S=(a*h):2
S= (4 см * 12 см): 2 = 24 см2
ответ: 24 см2
№2
Дано: AB=12, BC=13, ∠A=90°
Найти: АС, S
Решение.
1) По т. Пифагора:
AC^2=BC^2-AB^2;
AC^2= 169-144;
AC^2=25;
AC=5 см.
2) S=(AC*AB):2
S=(5 см * 12 см) : 2 = 30 см2.
ответ: 1) 5 см; 2) 30 см2.
№3.
Дано: a=10 см, b=12 см
Найти: S, P
Решение.
1) S=(ab):2
S= (10см * 12 см) : 2 = 60 см2.
2) В треугольнике ABC: ∠A=90°, AB=a:2=10:2=5 см, AC=b:2=12:2=6 см
По теореме Пифагора:
BC^2=AB^2+AC^2;
BC^2=25+36;
BC^2=61;
BC=√61см.
P=4*BC
P=4√61см.
ответ: 1) 60 см2; 2)4√61см.
А №4 я не поняла, извините