Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
самый простой из условия видно, что стороны треугольников попарно пропорциональны с коэффициентом подобия k=3=15/5=24/8=36/12
это значит, что высота h1 в первом треугольнике к стороне 5, будет пропорциональна высоте h2 вo втором треугольнике к стороне 15
причем h2=kh1, т.е. h2=3h1
тогда
площадь первого треугольника S1=1/2*5*h1
площадь второго треугольника S2=1/2*15*h2
рассмотрим отношение площадей
S1/S2=1/2*5*h1/1/2*15*h2=5*h1/(15*3h1)=1/9
ответ S1:S2=1:9
самый тупой по формулe Герона
S=√p(p-a)(p-b)(p-c)
S площадь треугольника
a,b,c стороны треугольника
р-полупериметр треугольника
потом сравнить S1/S2