М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alievarena81
alievarena81
22.10.2022 02:18 •  Геометрия

Для каждой задачи найдите расстояние от точки М до прямой АВ . С ОбЪЯСНЕНИЕМ ​


Для каждой задачи найдите расстояние от точки М до прямой АВ . С ОбЪЯСНЕНИЕМ ​

👇
Ответ:
Falzy
Falzy
22.10.2022

Длина перпендикуляра, проведённого из данной точки к данной прямой, называется расстоянием от этой точки к этой прямой.

#1.

Этим расстоянием будет являться отрезок BM, его длину нужно найти. Этот отрезок представляет собой катет прямоугольного треугольника, лежащий напротив угла в 30°. По свойству прямоугольного треугольника такой катет будет равен половине гипотенузы, в данном случае – AM. AM = 26, следовательно BM = 13.

ответ: 13.

#2. Сумма острых углов прямоугольного треугольника по его свойству должна быть равна 90°, тогда угол M + угол A = 90°, а так как угол M = 60°, то угол A = 30°. Нам требуется найти BM. BM – это катет, лежащий напротив угла в 30°, значит BM = 1/2 × AM, а так как AM = 30, то BM = 15.

ответ: 15.

#5. Я прикрепил рисунок к заданию. Нам нужно будет найти расстояние от точки M до AB, то есть перпендикуляр MF. Сумма острых углов прямоугольного треугольника равна 90°, тогда угол B + угол A = 90°. Угол B = 60° по условию, значит угол A = 30°. Тогда MF = 1/2 AM, так как MF – катет, лежащий напротив угла в 30. AM по условию равно 8, значит MF = 4.

ответ: 4.

#6. Рисунок к заданию прикрепил. Так как требуется найти расстояние от точки M до отрезка AB, то нужно найти перпендикуляр ME. Это задание можно решить двумя :

#1. ME – перпендикуляр, проведённый из вершины треугольника ABM, значит ME – высота. В треугольнике AMB два угла равны, значит треугольник равнобедренный. А в равнобедренном треугольнике высота, проведённая к основанию, является медианой, то есть ME – медиана. Есть свойство прямоугольного треугольника, которое гласит, что медиана, проведённая из вершины прямого угла прямоугольного треугольника, равна половине гипотенузы, тогда ME = 1/2 × AB, а раз AB = 15 по условию, то ME = 7,5.

#2. В прямоугольном треугольнике сумма острых углов равна 90°, то есть угол A + угол B = 90°, а раз они равны, то угол A = углу B = 45°, тогда треугольник AMB – равнобедренный. ME – перпендикуляр, а значит треугольники AME и BME – прямоугольные. В прямоугольном треугольнике сумма острых углов равна 90°, то есть угол BME + угол B = 90° и угол A + угол AME = 90°. Углы A и B = 45°, как мы уже убедились, значит углы BME и AME = 45°. Тогда треугольники AME и BME – равнобедренные, а значит в этих треугольниках боковые стороны равны. Тогда ME = AE и ME = BE. Треугольник AMB – равнобедренный, ME – высота, а значит ME – медиана, тогда AE = BE. Эти стороны образуют AB, которая равна 15, значит AE = BE = 7,5. А так как ME равна этим сторонам, то ME = 7,5.

ответ: 7,5.

Объяснение:

4,5(7 оценок)
Открыть все ответы
Ответ:
Лиана1574
Лиана1574
22.10.2022

14√2+12

Объяснение:

Так как боковая грань пересекается с меньшей стороной при основании с 45 градусов, то высота будет равна половине второй стороне при основании, из-за того что проекция образует равнобедренный прямоугольный треугольник.

Площадь боковой поверхности пирамиды определяется нижеуказанной формулой:

S=Ph/2

где, P периметр основания, h высота (апофема).

P=2(3+4)=14

h=2√2

S=14*2√2/2=14√2

Площадь основания пирамиды:

S=a*b=4*3=12

Площадь полной поверхности пирамиды:

S(пол)=S(бок)+S(осн)=14√2+12

ответ: 14√2+12

4,4(40 оценок)
Ответ:
thefirststudent
thefirststudent
22.10.2022

О (0;9).

Объяснение:

1. Точка, лежащая на оси ординат, имеет абсциссу, равную нулю. Обозначим искомую точку О (0;у).

По условию О равноудалена от А(3;2) и В(7;6)​, тогда

ОА = ОВ.

ОА^2 = (3-0)^2 + (2-у)^2 = 9 + (2-у)^2.

ОВ^2 = (7-0)^2 + (6-у)^2 = 49 + (6-у)^2.

Составим и решим уравнение:

9 + (2-у)^2 = 49 + (6-у)^2

9 + 4 - 4у + у^2 = 49 + 36 -12у + у^2

13 - 4у = 85 -12у

12у - 4у = 85 - 13

8у = 72

у = 72 : 8

у = 9

О (0;9) - искомая точка.

Проверим полученный результат:

О (0;9), А(3;2) и В(7;6)​

ОА^2 = (3-0)^2+(2-9)^2 = 9+49 = 58;

ОВ^2 = (7-0)^2+(6-9)^2 = 49+9 = 58.

ОА = ОВ - верно.

4,8(43 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ