ответ: 34 см
Объяснение:
1. Расстояния от концов диаметра до касательной -- это перпендикуляры к касательной из этих концов.
AB = 15 см, CD = 19 см
2. O - центр окружности, E - точка касания. Проведём OE. По свойству касательной к окружности OE ⊥ AD
3. Так как OE ⊥ AD, AB ⊥ AD, CD ⊥ AD, то AB ║ CD ║ OE
4. AB║CD ⇒ ABCD - трапеция
5. BO = OC, AB║CD║OE ⇒ AE = ED (теорема Фалеса)
6. Из пункта 5 следует, что OE - средняя линия трапеции ABCD.
OE = (AB + CD)/2 = (15+19)/2 = 34/2 = 17 см
7. OE - радиус. Тогда диаметр BC = 2OE = 2*17 = 34 см
MN=NK=20 см. На стороне NK лежит точка A так, что AK : AN как 1 : 3. Найти AM.
Сделаем рисунок.
АК:КN=1:3
Пусть коэффициент этого отношения будет х.
Так как NK=20=х+3х=4x,
AK=20:4=5см
Проведем АВ параллельно основанию МК и АС параллельно боковой стороне NM.
Треугольники MNK и ABN подобны с коэффициентом подобия KN:AN=4:3
Cледовательно, МК:АВ=4:3
10:АВ=4:3
4АВ=30
АВ=7,5 см
В параллелограмме АВМС противоположные стороны равны.
ВМ=АК=АС=5 см
МС=7,5 см
Треугольник АСК - равнобедренный.
Найдем по т. Пифагора его высоту АН.
КС=МК-МС=10-7,5=2,5 см
НК=1,25 см
АН²= (АК²-НК²)=(5²-1,25²)=23,4375
Из прямоугольного треугольника НАМ найдем АМ по т.Пифагора:
АМ=√(МН²+АН²)=√(7,5²+23,4375)=√100=10 см