1)Пусть х см - a
(3х)см-b
S=ab
3x^2=27
x1=-3 -не удовлетворяет,так как <0
x2=3
а=3 см
b=9 см
ответ:3 см;9 см
2)Sквадрата=а^2
а^2=64 см
а=8 см
Р=а*4
Р=8*4=32 см
ответ:32 см
3)У ромба все стороны равны,а сторон 4.
Р=4*а
а=16:4
а=4 см
S=а*h(высота)
16=4*h
h=4 см
ответ:4 см
4)S=1/2 *AB(гипотенуза)*h(высота)
1/2*АВ*4=40
АВ=20 см
ответ:20 см
5)Так как трапеция прямоугл.,то большая сторона и является высотой
S=(ВС+AD)/2 *h(высота)
S=(5+13)/2*10
S=90 см^2
ответ:90 см^2
6)Сумма углов многоугольника равна 180*(n-2),где n-количество сторон
у нас сумма углов 180*3=540 градусов
Пусть х градусов приходится на одну часть
15х=36
х=36 градусов
36 градусов-первый угол
72 градусов-2 угол
108 градусов-3 угол
144 градуса-4 угол
180 градуса-5 угол
8)пусть 1 катет-х см, 2 катет-(х+2)
По теореме Пифагора находим х
х^2+x^2+4x+4=100
x^2+2x-48=0
D=49
x1=-8 - <0 не удовлетворяет
х2=6
1 катет-6 см
2 катет-8 см
Площадь прямоугольного треугольника равна половине произведения катетов.
S=6*8/2=24 кв.см.
ответ:24 кв.см.
АВСД - прямоуг. трапеция , АД║ВС , ∠А=∠В=90° , ВС=ВД
СН⊥АД , СН∩ВД=К , СК=20 см , КН=12 см .
СК:КН=20:12 ⇒ СК:КН=5:3
ΔВСД - равнобедренный, т.к. ВС=СД ⇒ ∠ВСД=∠СДВ .
∠ВСД=∠ВДА как накрест лежащие при параллельных АД и ВС и
секущей ВД ⇒
∠СВД=∠ВДА ⇒ ВД - биссектриса
ΔСДН: ВК - биссектриса, по свойству биссектрисы:
СК:СД=КН:ДН ⇒ СД:ДН=5:3 ⇒ СД=5х , ДН=3х .
СН²=СД²-ДА²=(5х)²-(3х)²=16х² ⇒ СН=4х , 4х=(20+12) , 4х=32 , х=8
СД=5·8=40 (см) , ДН=3·8=24 (см)
ВС=СД=40 см ⇒ АН=ВС=40 см ( как противоположные стороны прямоугольника АВСН ⇒ АД=АН+НД=40+24=64 (см)
S(АВСД)=(АД+ВС):2·СН=(64+40):2·32=1664 (см²)
Объяснение:
Все грани куба – квадраты и противоположные грани образуют параллельные плоскости. Искомая плоскость α пересекает ABC по прямой PM, а A1B1C1 – по прямой NK, причем . Далее, продолжение отрезков PM и BC пересекаются в точке E и точка E принадлежит плоскости BCC1. Так как точка N также принадлежит этой плоскости, соединяем эти точки прямой. Получаем точку F на отрезке BB1. Затем, продолжаем отрезки DC и PM, которые пересекаются в точке U. Соединяем точку U с точкой K, получаем точку Z на отрезке DD1. В результате, получаем сечение PMFNKZ в виде правильного шестиугольника.
б) Угол между плоскостью A1BD и α (правильный шестиугольник) – это линейный угол двугранного угла. Учитывая, что диагонали BD и AC перпендикулярны, имеем: , следовательно, по теореме о трех перпендикулярах. И искомый угол – это угол A1O1A.
Пусть ребро куба равно 1, тогда и
и