Из точки, находящейся на расстоянии 24 см от плоскости, проведены к ней две наклонные, угол между которыми 90°. Проекции этих наклонных на плоскость равны 18 см и 32 см. Найдите расстояние между основаниями наклонных.
Обозначим точку С, наклонные пусть будут СА и СВ, а основание перпендикуляра,проведенного из С к плоскости - Н. Так как расстояние от точки до плоскости измеряется длиной перпендикулярного к ней отрезка, треугольники АСН и ВСН - прямоугольные. По т.Пифагора найдем АС²: АС²=АН²+СН²=324+576=900 ВС²=ВН²+СН²=1024+576=1600 Треугольник АСВ - прямоугольный по условию ( угол между наклонными 90° Его гипотенуза АВ и есть искомое расстояние. АВ²=АС²+ВС²=900+1600=2500 АВ=50 см
Дано: ABC - равнобедренный треугольник; AB = BC = 13дм, АС = 10см. Найти: решение: У равнобедренного треугольника боковые стороны и углы при основания равны С вершины В проведём перпендикулярно к стороне основанию АС высоту ВК. Делит она сторону на отрезки: С прямоугольного треугольника ABK ( ∠AKB=90°): По т. Пифагора высота ВК равна: Площадь равнобедренного треугольника равна произведению стороны основания на высоту делённое на 2 Синус угла - это отношение противолежащего катета к гипотенузе: Косинус угла - это отношение прилежащего катета к гипотенузе: Тангенс угла - это отношение противолежащего катета к прилежащему катету Котангенс угла - это отношение прилежащего катета к противолежащему катету
13дм
Объяснение:
S=πR²
R=√(S/π)=√(169π/π)=√169=13 дм