а) Выразим у через х.
3х + 2у - 9 = 0, у + 3 = 0
у = - 1,5х + 4,5 у = - 3 (1)
Для построения первой прямой возьмем два произвольных значения х и вычислим для них соответствующие значения у:
x = 1, y = - 1,5 + 4,5 = 3
x = 3, y = - 1,5 · 3 + 4,5 = 0
Через точки (1; 3) и (3; 0) проведем прямую.
Для построения второй прямой на координатной плоскости отметим точку у = -3 и начертим через эту точку прямую, параллельную оси Ох.
б) Приравняем правые части двух уравнений (1):
- 1,5х + 4,5 = - 3,
х = 5 - абсцисса точки пересечения.
Подставим это значение в уравнение прямой и найдем ординату точки пересечения:
у = - 1,5 · 5 + 4,5 = - 3.
Координаты точки пересечения равны (5; - 3).
в) Треугольник АВС, площадь которого нам нужно отыскать, прямоугольный,
АВ = 4,5 + 3 = 7,5
ВС = 5
Sabc = 1/2 AB · BC = 1/2 · 7,5 · 5 = 18,75 кв. ед.
Дано :
Четырёхугольник ABCD - параллелограмм.
Отрезок DB - диагональ = 15 см.
∠ABD = 90°.
CD = 14 см.
Найти :
S(ABCD) = ?
AB ║ CD (по определению параллелограмма).
Рассмотрим накрест лежащие ∠ABD и ∠BDC при параллельных прямых АВ и CD и секущей BD.
При пересечении двух прямых секущей накрест лежащие углы равны.
То есть -
∠ABD = ∠BDC = 90°.
Тогда отрезок BD - ещё и высота параллелограмма ABCD (по определению).
Площадь параллелограмма равна произведению его стороны и высоты, опущенной на эту сторону.
Следовательно -
S(ABCD) = BD*CD
S(ABCD) = 15 см*14 см
S(ABCD) = 210 см².
210 см².