если две параллельные прямые пересечены секущей, то накрест лежащие углы равны.
доказательство:
пусть прямые а и b параллельны и пересечены секущей cd. доказать, что накрест лежащие углы 1 и 2 равны.
предположим, что углы 1 и 2 не равны. тогда от луча cd отложим ∠еcd=∠2 так, чтобы ∠еcd и ∠2 были накрест лежащими углами при пересечении прямых се и b секущей cd.
по построению эти накрест лежащие углы равны, а поэтому прямая cd параллельна прямой b. получили, что через точку с проходят две прямые (а и cе) параллельные прямой b. а это противоречит аксиоме параллельности прямых. следовательно, предположение неверно и угол ∠1=∠2. что и требовалось доказать.
пример.
прямая ав параллельна прямой cd, аd - биссектриса угла bac, а ∠adc=50 градусов. чему равна градусная мера ∠cad?
так как прямые ав и cd параллельны и ad - секущая при этих параллельных прямых, то накрест лежащие углы adc и bad равны. значит, ∠bad=50 градусов.
так как ad - биссектриса ∠bac, то ∠cad=∠bad. следовательно, градусная мера ∠cad=50 градусов.
пример.
прямые ав и cd параллельны. отрезок ав=сd. доказать, что прямая ас параллельна прямой bd.
рассмотрим треугольник abd и треугольник acd.
ав=cd по условию , ad - общая. а углы bad и adc равны как накрест лежащие углы при параллельных прямых ав и cd и секущей аd. следовательно, треугольники abd и acd равны по первому признаку равенства треугольников. а значит, у них соответственные стороны и углы равны.
то есть ∠cad=∠bda. а эти углы являются накрест лежащими при прямых ac и bd и секущей ad. это означает, что прямые ac и bd параллельны. что и требовалось доказать.
пример.
на рисунке ∠cbd=∠adb. доказать, что ∠вса=∠cad.
углы cbd и adb - накрест лежащие углы при прямых ad и bc и секущей bd. а так как эти углы равны, то прямые ad и bc параллельны.
∠вса и ∠cad являются накрест лежащими при параллельных прямых ad и bc и секущей ас, а следовательно, они равны. что и требовалось доказать.
отметим, что если доказана какая-либо теорема, то это не означает, что обратная ей теорема верна.
например, если углы вертикальные, то они равны. а вот если углы равны, то это ещё не означает, что они вертикальные.
1)если две параллельные прямые пересечены секущей, накрест лежащие углы равны.2)если две параллельные прямые пересечены секущей, то соответственные углы равны.3)если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.4)если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Пого́да — совокупность значений метеорологических параметров и явлений, оказывающих существенное влияние на жизнь и деятельность людей. Понятие «Погода» характеризует состояние атмосферы в определенный момент времени. Физические механизмы, обуславливающие изменения погоды, изучаются метеорологией. Кли́мат ( (klimatos) — наклон) — многолетний статистический режим погоды, характерный для данной местности в силу её географического положения. Под климатом принято понимать осреднённое значение погоды за длительный промежуток времени (порядка нескольких десятилетий) то есть климат это средняя погода. Таким образом, погода — это мгновенное состояние некоторых характеристик (температура, влажность, давление и другие) , а климат это среднее за длительный период — в некотором смысле ожидаемое состояние атмосферы. Каждый регион имеет свой климат, и, например, в середине континентов зима и лето более выражены, чем на побережьях. Отклонение погоды от климатической нормы не может рассматриваться как изменение климата, например, очень холодная зима не говорит о похолодании климата. Для выявления изменений климата нужен значимый тренд характеристик атмосферы за длительный период времени порядка десятка лет.
если две параллельные прямые пересечены секущей, то накрест лежащие углы равны.
доказательство:
пусть прямые а и b параллельны и пересечены секущей cd. доказать, что накрест лежащие углы 1 и 2 равны.
предположим, что углы 1 и 2 не равны. тогда от луча cd отложим ∠еcd=∠2 так, чтобы ∠еcd и ∠2 были накрест лежащими углами при пересечении прямых се и b секущей cd.
по построению эти накрест лежащие углы равны, а поэтому прямая cd параллельна прямой b. получили, что через точку с проходят две прямые (а и cе) параллельные прямой b. а это противоречит аксиоме параллельности прямых. следовательно, предположение неверно и угол ∠1=∠2. что и требовалось доказать.
пример.
прямая ав параллельна прямой cd, аd - биссектриса угла bac, а ∠adc=50 градусов. чему равна градусная мера ∠cad?
так как прямые ав и cd параллельны и ad - секущая при этих параллельных прямых, то накрест лежащие углы adc и bad равны. значит, ∠bad=50 градусов.
так как ad - биссектриса ∠bac, то ∠cad=∠bad. следовательно, градусная мера ∠cad=50 градусов.
пример.
прямые ав и cd параллельны. отрезок ав=сd. доказать, что прямая ас параллельна прямой bd.
рассмотрим треугольник abd и треугольник acd.
ав=cd по условию , ad - общая. а углы bad и adc равны как накрест лежащие углы при параллельных прямых ав и cd и секущей аd. следовательно, треугольники abd и acd равны по первому признаку равенства треугольников. а значит, у них соответственные стороны и углы равны.
то есть ∠cad=∠bda. а эти углы являются накрест лежащими при прямых ac и bd и секущей ad. это означает, что прямые ac и bd параллельны. что и требовалось доказать.
пример.
на рисунке ∠cbd=∠adb. доказать, что ∠вса=∠cad.
углы cbd и adb - накрест лежащие углы при прямых ad и bc и секущей bd. а так как эти углы равны, то прямые ad и bc параллельны.
∠вса и ∠cad являются накрест лежащими при параллельных прямых ad и bc и секущей ас, а следовательно, они равны. что и требовалось доказать.
отметим, что если доказана какая-либо теорема, то это не означает, что обратная ей теорема верна.
например, если углы вертикальные, то они равны. а вот если углы равны, то это ещё не означает, что они вертикальные.
1)если две параллельные прямые пересечены секущей, накрест лежащие углы равны.2)если две параллельные прямые пересечены секущей, то соответственные углы равны.3)если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.4)если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.