
1. Рассмотрим 3-ки NPM и RPQ:
<MNP = <PQR (по усл.)
NP = PQ (по усл.)
<NPM = <RPQ (вертикальные)
След-но,
тр. NPM = тр. RPQ (по стороне и двум прилежащим к ней углам)
21. Тр. CDE — равнобедренный (CD = DE)
значит,
<FCD = <HED
2. Рассмотрим 3-ки CFD и EHD:
CD = ED (по усл.)
<CDF = <EDH (по усл.)
<FCD = <HED (по доказанному)
След-но,
тр. CFD = тр EHD (по стороне и двум прилежащим углам)
31. Рассмотрим 3-ки QOR и POR:
RO — общая
<QOR = <POR (по усл.)
QO = PO(по усл.)
След-но,
тр QOR = тр POR (по двум сторонам и углу между ними)
41. <ВАС = <ВСА (по усл.), значит:
тр. АВС — равнобедренный (АВ = ВС)
2. <КАВ = 180 - <ВАС (смежные)
<NCB = 180 - <BCA (смежные)
т.к. <ВСА = <ВАС, то:
<КАВ = <NCB
3. Рассмотрим 3-ки КАВ и NCB:
KA=CN (по усл)
AB = BC (по доказанному)
<КАВ = <NCB(по доказанному)
След-но, тр. КАВ = тр NCB (по двум сторонам и углу между ними)
51. <А = <D (накрест лежащие при прямых АС и ЕD и секущей АD)
значит,
АС || ED
2. Т. к. АС || ED, то:
<С = <Е
3. <АВС = <DBE (вертикальные)
4. Рассмотрим 3-ки АВС и DBE:
Против равных углов лежат равные стороны, значит:
AB = BD
CB = BE
ED = AC
След-но,
тр АВС = тр DBE (по трем сторонам)
61. Рассмотрим 3-ки ADB и ВСD:
BD — общая
<АDB = <CBD (по усл)
<ABD = <BDC (по усл)
След-но,
тр ABD = тр BCD (по стороне и прилежащим к ней углам)
Объяснение:
линейная ф-ция у=kх+b
прямая а имеет координаты (-2;0), (-1;2), подставляем в уравнение
первую точку 0= -2k+b b=2k
вторую точку 2= -k+b b=k+2
2к=к+2
к=2, b=2+2=4
значит уравнение прямой а выглядит как у=2х+2
прямая b имеет координаты (0;0), (-1;2), подставляем в уравнение
первую точку 0= 0*к+ b=0
вторую точку 2= -k+0 к= -2
значит уравнение прямой b выглядит как у= -2х
прямая с имеет координаты (-2;0), (2; -4), подставляем в уравнение
первую точку 0= -2k+b b=2k
вторую точку -4= 2k+b b= -4 - 2к
2к= -4 - 2к
4к= -4, к= -1 b= 2*(-1)= -2
значит уравнение прямой а выглядит как у= -х-2
153
Объяснение: