М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dralov574
dralov574
29.01.2020 09:31 •  Геометрия

1.На стороне AD параллелограмма ABCD взята точка N так, что АN = 5 см. ND = 9 см. BN = 12 см, BD = 15 см. Докажите, что треугольник BND прямоугольный, и найдите площадь параллелограмма

👇
Открыть все ответы
Ответ:
irinka218
irinka218
29.01.2020

Проведем перпендикуляр SO к плоскости основания и перпендикуляры SK, SM и SN к сторонам ΔABC. Тогда по теореме о трех перпендикулярах OK ⊥ BC, ОМ ⊥ АС и ON ⊥ AB.

Тогда, ∠SKO = ∠SMO = ∠SNO = 45° — как линейные углы данных двугранных углов.

А следовательно, прямоугольные треугольники SKO, SMO и SNO равны по катету и острому углу.

Так что OK=OM=ON, то есть точка О является центром окружности, вписанной в ΔАВС.

Выразим площадь прямоугольника АВС:

s = \sqrt{p(p - ab)(p - ac)(p - bc)} = \sqrt{16 \times (16 - 10) \times (16 - 10) \times (16 - 12) = 48 cm }

С другой стороны можно S=p×r

r = \frac{s}{p} = \frac{48}{16} = 3(cm) \\ ok = r = 3cm

Так как в прямоугольном треугольнике SOK острый угол равен 45°, то ΔSOK является равнобедренным и SO=OK=3 см.

ответ: 3 см.

4,8(60 оценок)
Ответ:
aydansuper12
aydansuper12
29.01.2020
ответ:

64\pi см³.

Объяснение:

Обозначим данную пирамиду буквами SABC.

AB = 12 см.

Проведём высоту пирамиды SO.

\angle SAO = 30^{\circ}

Начертим около этой пирамиды конус.

Так как конус описан около данной пирамиды, то высота конуса совпадает с высотой данной пирамиды.

=======================================================

Так как данная пирамида - правильная, треугольная ⇒ основание данной пирамиды - правильный треугольник.

\Rightarrow AB = BC = AC = 12 см.

Проведём высоту AH в \triangle ABC

\triangle SAO - прямоугольный, так как SO - высота пирамиды.

\triangle ABH - прямоугольный, так как AH - высота \triangle ABC.

Так как \triangle ABC - равносторонний ⇒ AH - высота, медиана и биссектриса

BH = HC = BC:2 = 12:2 = 6 см, так как AH - медиана.

Найдём AH по теореме Пифагора (a^2 = c^2 - b^2).

AH = \sqrt{AB^2 - BH^2} = \sqrt{12^2 - 6^2} = \sqrt{108} = 6\sqrt{3} см.

Точка O - пересечение медиан и делит их в отношении 2:1, считая от вершины.

\Rightarrow AO = 2/3\cdot AH = 2/3 \cdot 6\sqrt{3} = 4\sqrt{3} см

OH = 1/3\cdot AH = 1/3 \cdot 6\sqrt{3} = 2\sqrt{3} см.

Также AO - радиус описанной около \triangle ABC окружности.

Рассмотрим \triangle SAO

Если угол в прямоугольном треугольнике равен 30^{\circ}, то напротив лежащий катет равен половине гипотенузы.

\Rightarrow SA = 2SO

Составим уравнение:

Пусть x - SO, тогда 2x - SA.

И по теореме Пифагора (c^2 = a^2 + b^2).

(4\sqrt{3})^2 + x^2 = (2x)^2\\\\48 + x^2 = 4x^2\\\\-3x^2 =-48\\\\x^2 =16 \\\\x= 4

V конуса = 1/3 \cdot \pi \cdot AO^2 \cdot SO = \pi \Big(1/3 \cdot (4\sqrt{3})^2 \cdot 4\Big) = 64\pi см³.


Дана правильная треугольная пирамида со стороной основания 12. Боковое ребро пирамиды наклонено к пл
4,4(89 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ