4 точки не лежат на одной плоскости. Это значит, через них нельзя провести плоскость. Если прямая соединяет две любые точки, то другая прямая, соединяющая другие две точки обязана быть скрещивающейся, так как в противном случае через эти две прямые можно было бы провести плоскость и 4 точки лежали бы в одной плоскости. То есть, если прямая соединяет две точки, то прямая, соединяющая другие две точки будет с ней скрещивающейся.
Итак, ответ - для АВ скрещивающаяся - СD, для DC - АВ. Впрочем, это одна и та же пара. В этой задаче есть еще одна пара скрещивающихся прямых. ВС скрещивается с АD.
Стороны треугольника равны 6, 25 и 29. Найти радиус окружности, проходящей через середины сторон этого треугольника. Окружность проходит через середины сторон треугольника. Следовательно она является описаной окружностью для треугольника составленного из средних линий (отрезков соединяющих середины сторон треугольника) исходного треугольника Длины средних линий найти просто это половина сторон исходного треугольника . Исходный треугольник 6, 25, 29 Треугольник из средних линий 3; 12,5; 14,5. Радиус описанной окружности определяется по формуле R =a*b*с/(4корень(p(p-a)(p-b)(p-c))). где p=(a+b+с)/2 У нас а=3;b=12,5; c=14,5 p =(3+12,5+14,5)/2=30/2=15 Находим радиус R =3*12,5*14,5/(4*корень(15(15-3)(15-12,5)(15-14,5)))= = 543,75/(4*корень(15*12*2,5*0,5))= 543,75/(4*15)=9,0625
Итак, ответ - для АВ скрещивающаяся - СD, для DC - АВ. Впрочем, это одна и та же пара. В этой задаче есть еще одна пара скрещивающихся прямых. ВС скрещивается с АD.