Номер 1
<1=130 градусов
<3=<1=130 градусов,как вертикальные
<5=<3=130 градусов,как внутренние накрест лежащие
<1=<7=130 градусов,как внешние накрест лежащие
<5+<4=180 градусов,как односторонние
<4=180-130=50 градусов
<6=<4=50 градусов,как внутренние накрест лежащие
<8=<4=50 градусов,как соответственные
<2=<8=50 градусов,как внешние накрест лежащие
Номер 2
<2=(180-20):2=160:2=80 градусов
<1=80+20=100 градусов
<3=<1=100 градусов,как вертикальные
<3=5=100 градусов,как внутренние накрест лежащие
<5=<7=100 градусов,как вертикальные
<3+<6=180 градусов
<6=180-100=80 градусов
<4=<6=80 градусов,как внутренние накрест лежащие
<8=<4=80 градусов,как соответственные
Номер 3
<4=(180-110):2=70:2=35 градусов
<5=35+110=145 градусов
<8=<4=35 градусов,как соответственные
<1=<5=145 градусов,как соответственные
<6=<4=35 градусов,как внутренние накрест лежащие
<3=<5=145 градусов,как внутренние накрест лежащие
<2=<8=35 градусов,как внешние накрест лежащие
<7=<3=145 градусов,как соответственные
Номер 4
<2=<8,как накрест лежащие
Если при пересечении двух прямых третьей,накрест лежащие углы равны между собой,то прямые параллельны
а || b при секущей с
Объяснение:
h² =a₁*b₁,где a₁ и b₁ проекции катетов a и b на гипотенузе(отрезки разд. высотой) || Пусть a₁ =9 см ; b₁= (h+4) см || .
h² =9(h+4) ;
h² -9h -36 =0 ;
[h= -3 ( не решения ) ; h =12 (см) .
b₁ =h+4 = 12+4 =16 (см).
Гипотенуза c = a₁+b₁ = 9 см+ 16 см =25 см .
a =√(a₁²+ h²) = √(9²+ 12²) =15 (см) . || 3*3; 3*4 ; 3*5 ||
или из a² =c*a₁=25*9⇒ a=5*3 =15 (см) .
b = (b₁²+ h²) = √(16²+ 12²) = 20 (см) . || 4*3; 4*4 ; 4*5 ||
или из b² =c*b₁=25*16 ⇒ b=5*4 =20 (см) .
ответ: 15 см, 20 см, 25 см . || 5*3; 5*4 ; 5*5 |