1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
(1). Рассмотрим треугольник АВD и АСD. У них :
1) АВ=ВС (по условию )
углы 1 и 2 равны (по условию )
сторона AD общая
Из этого следует, что треугольники равны по 1 признаку равенства треугольников.
2) Из равенства треугольников следует равенство соответственных элементов :
1 углы ACD и АВD равны
2 углы АDВ и АDC равны
Следовательно угол АВD = 38 °, a угол ADB = 102°
(2). Углы ENM и KNF в треугольниках вертикальные, из этого следует, что они равны. MN=NK, EN=NF, из этого следует, что треугольники MNE и KNF равны по первому признаку равенства треугольников.
MK = MN + NK, а так как MN=NK, то MN = 1\2MK = 10\2 = 5 см.
Треугольники равны, значит ME = KF = 8 см.