Построим прямоугольную трапецию АВСД.
Признак прямоугольной трапеции: в прямоугольной трапеции есть два смежных прямых угла, то есть углы С и Д (смежные) равны по 90 градусов.
Сумма углов трапеции равна 360 градусов, а значит углы А+В=360-С-Д=180 градусов.
Пусть угол В=х градусов, тогда угол А=(180-х). По условию В-А=48
Получаем уравнение:
х-(180-х)=48
2х-180=48
2х=48+180
х=228/2
х=114
Угол В=114 градусов
Угол А=180-114=66 градусов
А=66 градусов
В=114 градусов
С=Д=90 градусов
DC=6
Объяснение:
1. рассмотрим треугольник ADC, прямоугольный с углами 60 град. и 90 град., т.к. сумма углов в прямоуг. треуг. 180 град., то оставшийся угол равен 30 град.
2. есть теорема, что катет лежащий против угла в 30 град. равен 1\2 гипотенузы, соответственно если этот катет (BD) равен 2 по условию, то гипотенуза АВ в треугольнике АDC равна 4
3. рассмотрим треугольник АВС: в нем угол С равен 30 град (см. п. 1), катет АВ, лежащий против этого угла равен 4, значит (см. п.2) гипотенуза ВС равна 8
4. Т.к. ВС=8, ВD=2, то DС=8-2=6