Объяснение:
1) ∠KON = 180° - 78° = 102° (как смежный с ∠MOK)
x = ∠OKN = (180° - 102°) / 2 = 39° (ΔKON равнобедренный)
5) Дуга SNM = 180° (стягивает диаметр)
Меньшая дуга MN = 80°, т.к. на нее опирается вписанный угол в 40°
Следовательно x = 180° - 80° = 100°
2) Т.к. AO = OB, то ΔAOB равнобедренный. А т.к. угол при вершине O равен 60°, то он равносторонний. Отсюда x = 8.
6) Меньшая дуга MK = 360° - 180° - 124° = 56°
Вписанный угол опирающийся на эту дугу равен половине ее градусной меры:
x = 56° / 2 = 28°
cм. чертеж.
М - центр АВС. О - центр описанного шара. Обозначим АО = ОЕ = R, OM = x.
При этом АЕ = а - сторона тетраэдра, АМ = a/√3 - радиус окружности, описанной вокруг АВС (или - просто - расстояние от центра АВС до вершины, я так думаю, нет смысла тратить место и время на объяснения "как это вычислить". Высота грани a*√3/2, а AM = 2/3 от этой высоты).
ЕМ = √(АЕ^2 - AM^2) = a*√(2/3); - высота тетраэдра.
OM = ЕМ - ОЕ = ЕМ - R = a*√(2/3) - R;
ОM = √(АО^2 - AM^2) = √(R^2 - a^2/3);
Получаем
a*√(2/3) - R = √(R^2 - a^/3); возводим в квадрат, приводим подобные, получаем
a = R*2*√(2/3); по условию R = 3*√3; => a = 6*√2;
Сторона тетраэдра а, высота а*√(2/3), площадь грани a^2*√3/4, объем
V = (a^2*√3/4)*(а*√(2/3))/3 = a^3*√2/12; подставляем значение
V = (6*√2)^3*√2/12 = 72;