Плоскость проведена через точку D параллелограмма ABCD, прямые, проходящие через вершины A, B, C, пересекаются в этой точке A1, B1, C1 соответственно. Если AA1 = 21 см и CC1 = 15 см, найдите расстояние BB1.
Пусть будет треугольник АВС. Угол С : угол В : угол А = 3 : 2 : 1. Пусть угол А=х, тогда угол В=2х, угол С=3х. По теореме о сумме углов треугольника 3х+2х+х=180, откуда х=30 градусов, значит, угол А=30 градусов, угол В=60 градусов, а угол С = 90 градусов. Треугольник АВС прямоугольный. Пусть катет ВС=у, тогда гипотенуза АВ=2у (катет, лежащий против угла в 30 градусов, равен половине гипотенузы). По теореме Пифагора найдём катет АС:
Пусть будет треугольник АВС. Угол С : угол В : угол А = 3 : 2 : 1. Пусть угол А=х, тогда угол В=2х, угол С=3х. По теореме о сумме углов треугольника 3х+2х+х=180, откуда х=30 градусов, значит, угол А=30 градусов, угол В=60 градусов, а угол С = 90 градусов. Треугольник АВС прямоугольный. Пусть катет ВС=у, тогда гипотенуза АВ=2у (катет, лежащий против угла в 30 градусов, равен половине гипотенузы). По теореме Пифагора найдём катет АС:
Теперь запишем отношение:
Разделим это отношение на у и получим ответ: