Одна из формул площади треугольника S-h•a/2
S (MDC)=DO•CM/2 ( DO - высота, СМ - основание треугольника)
∆ АВС правильный, -- все углы равны 60°
Медиана правильного треугольника является его биссектрисой и высотой.
СМ⊥АВ
СМ=СВ•sin60°=3√3•√3/2=4,5
Вершина правильной пирамиды проецируется в центр основания ( для правильного треугольника в основании - точку пересечения медиан)
Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.
СО=4,5•2/3=3
∆ DCO египетский, ⇒ DO=4
S (MDC)=4•4,5:2=9 см²
Центральний кут n-угольніка рівно
360°/n
n=20 центральний кут рівний
360°/20= 18°