AB =BC ; ∠A= ∠C =α =45° , OH =d =3 см ; ∠SAO=∠SBO=∠SCO=β=30°. --- V - ?
V =(1/3)Sосн *H =(1/3)S(ABC)*SO.
Если все боковые ребра (SA,SB ,SC) пирамиды образуют с плоскостью основания ABC равные углы (в данном случае β), то высота проходит через центр окружности описанной около основания. HO - серединный перпендикуляр стороны AB: OH⊥AB,AH =BH =AB/2; ||OH =d ||.
∠B =180°-2α ; R =d/sin(∠B/2) = d/sin(90°-α)=d/cosα. SO= R*tqβ =(d/cosα)*tqβ = (tqβ /cosα)* d . AB =2*OH*tqα=2d*tqα. S(ABC) =(1/2)*AB²*sin∠B = (1/2)*4d²*tq²α*sin(180°-2α)= 2d²*tq²α*sin2α= 2d²*tq²α*2sinα*cosα= 4d²*sin³α/cosα.
V =(1/3)S(ABC)*SO. V=(1/3)*4d²*sin³α/cosα*(tqβ /cosα)*d =(4/3)*sinα*tq²α**tqβ*d³.
Eсли α =45°, β=30°,d=3 см ,то : V=(4/3)*(√2/2)*(1²)*(1/√3)*3³=6√6.
1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)