Призма
Призмой называется многогранник, две грани которого n-угольники, а остальные n граней — параллелограммы.Боковые ребра призмы равны и параллельны.
Перпендикуляр, проведенный из какой-либо точки одного основания к плоскости другого основания, называется высотой призмы. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани, называется диагональю призмы.Поверхность призмы состоит из оснований и боковой поверхности призмы. Боковая поверхность призмы состоит из параллелограммов.
Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой. В противном случае призма называется наклонной.
У прямой призмы боковые грани – прямоугольники.
Высота прямой призмы равна ее боковому ребру.
Прямая призма называется правильной, если она прямая, и ее основания — правильные многоугольники
Площадь поверхности и объём призмы
Пусть H — высота призмы, — боковое ребро призмы, — периметр основания призмы, площадь основания призмы, — площадь боковой поверхности призмы, — площадь полной поверхности призмы, - объем призмы, — периметр перпендикулярного сечения призмы, — площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:
Для прямой призмы, у которой боковые ребра перпендикулярны плоскостям оснований, площадь боковой поверхности и объем даются формулами:
Параллелепипед
Параллелепипедом называется призма, основанием которой является параллелограмм.
Параллелограммы, из которых составлен параллелепипед, называются его гранями, их
Сторона правильного n-угольника через радиус описанной окружности:
a(n) = 2R·sin(180°/n)
1. a₃ = 2R · sin(180° / 3) = 2R · sin60° = 2R√3/2 = R√3
R = a₃ / √3 = 9 / √3 = 3√3 см
С = 2πR = 2π · 3√3 = 6π√3 см
2. a₄ = 2R · sin(180°/4) = 2R · sin45° = 2R · √2/2 = R√2
R = a₄ / √2 = 10 / √2 = 5√2 см
S = πR² = 50π см²
3. Центральный угол правильного восьмиугольника:
α = 360° / 8 = 45°
Центральный угол, соответствующий дуге АВС, состоит из двух центральных углов, поэтому ∠АОВ = 45° · 2 = 90°.
Длина дуги: l = 2πR · α / 360°
l = 2π · 6 · 90° / 360° = 3π см
4. Площадь кругового сектора, соответствующего центральному углу 90°, равна 12 см². Найдите площадь круга.
Такой сектор - это четверть круга. Значит площадь круга в 4 раза больше:
S = 12 · 4 = 48 см²