Прямоугольный треугольник СНD равнобедренный и катет HD равен катету СН = 8 (как противоположные стоороны прямоугольника АВСН).
Модуль суммы векторов находится по теореме косинусов: |c|² = |a|²+|b|² - 2*|a|*|b|*Cosβ, где β - угол, смежный с углом α между векторами.
Модуль разности векторов находится по теореме косинусов: |c|² = |a|²+|b|² - 2*|a|*|b|*Cosα, где α - угол между векторами.
Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения СОНАПРАВЛЕННОСТИ с другим вектором. Итак,
Если я найду площадь S треугольника со стороной a и углами α и β при этой стороне, то площадь подобного ему треугольника, на месте стороны a у которого - сторона b, будет равна S*(b/a)^2; а площадь трапеции, которая получается после "вычитания" второго треугольника из первого, будет равна S*(1 - (b/a)^2); поэтому для начала я буду вычислять площадь S; Из теоремы синусов легко найти стороны. Пусть напротив угла β лежит сторона c; тогда c/sin(β) = a/sin(π- α - β); или c = a*sin(β)/sin(α + β); Между a и c - угол α, поэтому S = a^2*sin(α)*sin(β)/(2*sin(α + β)); по сути это уже ответ, площадь трапеции равна (a^2/2 - b^2/2)*sin(α)*sin(β)/sin(α + β); Ну, если подставить числа, там получается прямоугольный треугольник (если продолжить боковые стороны). Значит, ответ (36 - 4)*(1/2)*(√3/2)/2 = 4√3 можно получить и другим то есть проверить его верность.
|AC| = 10 см.
Объяснение:
Опустим высоту СН на основание AD трапеции.
Прямоугольный треугольник СНD равнобедренный и катет HD равен катету СН = 8 (как противоположные стоороны прямоугольника АВСН).
Модуль суммы векторов находится по теореме косинусов: |c|² = |a|²+|b|² - 2*|a|*|b|*Cosβ, где β - угол, смежный с углом α между векторами.
Модуль разности векторов находится по теореме косинусов: |c|² = |a|²+|b|² - 2*|a|*|b|*Cosα, где α - угол между векторами.
Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения СОНАПРАВЛЕННОСТИ с другим вектором. Итак,
Вектор DC = НС - HD или
|DC| = √(CH²+HD²-2*CH*HD*Cos90) = √(64+64-0) = 8√2.
Вектор АС = AD + DC или
|AC| = √(AD²+DC²-2*CH*HD*Cos45) или
|AC| = √(196+128-2*14*8√2*(√2/2)) = √100 = 10.
ответ: Длина вектора (модуль) АС = 10 см.