Відрізки двох дотичних, що виходять із однієї точки, рівні. АВ=АС, тому трикутник АВС рівнобедрений
Трикутники АВО і АСО рівні за трьома сторонами (ОВ=ОС як радіуси одного кола, АО-спільна, АВ=АС як зазначалося раніше)
Тому і відповідні кути рівні, а саме <BAO=<OAC=<ВАС/2=60°/2=30°
Знайдемо радіус через трикутник АОВ. Радіус, проведений до точки дотику дотичної і кола, перпендикулярний до цієї дотичної, тому <ОВА=90° і трикутник АОВ прямокутний
ОВ лежить навпроти кута 30°, а АО гіпотенуза, тому радіус удвічі менше за АО
Высота проведена к большему основанию. У нас получился прямоугольный треугольник, две стороны нам известны, находим третью по теореме Пифагора: 5²-4²=х² х²=25-16=9 х=3 Проводим высоту из второй вершины к этому же основанию.У нас получается два прямоугольных треугольника. Так трапеция равнобедренная, то гипотенузы равны Высоты одной трапеции равны, следовательно, у нас есть равные катеты Треугольники равны по гипотенузе и катету, значит, неизвестная сторона второго треугольника тоже равна 3 После проведения двух высот у нас получился квадрат, сторона которого равна меньшему основанию.Находим её: 10-3-3=4 Средняя линия равна полусумме оснований: (10+4)/2=7 Площадь трапеции равна полусумме оснований на высоту (10+4)/2 х4=28
Відрізки двох дотичних, що виходять із однієї точки, рівні. АВ=АС, тому трикутник АВС рівнобедрений
Трикутники АВО і АСО рівні за трьома сторонами (ОВ=ОС як радіуси одного кола, АО-спільна, АВ=АС як зазначалося раніше)
Тому і відповідні кути рівні, а саме <BAO=<OAC=<ВАС/2=60°/2=30°
Знайдемо радіус через трикутник АОВ. Радіус, проведений до точки дотику дотичної і кола, перпендикулярний до цієї дотичної, тому <ОВА=90° і трикутник АОВ прямокутний
ОВ лежить навпроти кута 30°, а АО гіпотенуза, тому радіус удвічі менше за АО
R=OB=12/2=6 см