7) Примем диагональ d и высоту H, равные 2.
Тогда тангенс угла β наклона бокового ребра равен:
tg β = H/(d/2) = 2/1 = 2.
значит, β = arctg 2.
ответ В.
Тангенс наклона апофемы A равен: tg(A) = H/(1/√2) = 2√2.
ответ Г.
В треугольнике ASC боковые рёбра угол S делится высотой пополам.
Тогда угол ASC = 2arctg(1/2).
ответ Д.
8) Примем коэффициент пропорциональности длин сторон основания за к.
Полупериметр р = к(17+10+9)/2 = 18к.
Площадь боковой поверхности Sбок = PL = (2*18k)*16 = 36k*16.
Площадь основания по Герону:
So = √(18k*1k*8k*9k) = 36k².
Приравняем полную поверхность:
1440 = 2*36k² + 36k*16, после сокращения на 72 получаем:
k² + 8k – 20 = 0. D = 64 +4*20 = 144.
k1 = (-8 + 12)/2 = -10, не принимаем.
k2 = (-8 + 12)/2 = 2.
Находит площадь боковой поверхности Sбок = 36*2*16 = 1152 см².
ответ: Sбок = 1152 см².
9) Находим площади граней пирамиды.
p(ABC) = (13+14+15)/2 = 21 см. S(ABC) = √(21*8*7*6) = 84 см².
S(DAC) = (1/2)*9*13 = (117) см².
S(DAB) = (1/2)*9*15 = (135/2) см².
Находим высоту боковой грани BDC путём пересечения вертикальной плоскостью.
Сначала находим высоту основания из точки А.
h(A) = 2S/BC = 2*84/14 = 12 см.
Тогда h(BDC) = √(9² + 12²) = √(81 + 144) = √225 = 15 см.
Получим S(BDC) = (1/2)14*15 = 105 см².
ответ: S = 84+ (117/2) + (135/2) + 105 = 315 см².
ответ:
манилов-> коробочка-> ноздрев-> собакевич-> плюшкин
он ездил именно в такой последовательности, потому что возвышались пороки человеческие.
если манилов это пустой мечтатель, бездеятель, лентяй, то плюшкин это высшая степень пороков человека.
но, хотя все помещики считаются мертвыми душами, не развивиющимися, плюшкин считается самым живым из них, потому что него есть цель в жизни (еще больше разбогатеть) и у него хоть как-то проявляются чувства (он переживает из за одиночества; играет с внуками)