Просто постройте какой-то треугольник и проведите в нем биссектрису угла А и медиану к стороне АС.
Смотрите, как это решается.
Если площадь АВС равна S (по условию это 198, потом подставим), то площадь АВM равна S/2.
Sabm = S/2
(Если у двух треугольников общая высота - в данном случае это растояние от В до АС, то отношение площадей равно отношению сторон, к которым эта высота проведена - это будет использовано еще несколько раз)
Далее, CL/BL = 4/7 = AC/AB, и АМ = АС/2, поэтому АМ/AB = 2/7, но это означает, что MK/KB = 2/7;
То есть МК/BM = 2/(2 + 7) = 2/9 и KB/BM = 7/9 (ясно, что в сумме 1 и отношение 2/7)
Но это означает, что площадь АМK составляет 2/9 площади АВМ (высота общая, расстояние от А до ВМ, стороны относятся как МК/BM = 2/9)
Samk = Sabm*2/9 = S/9;
Ну, и CL/BL = 4/7, поэтому CL/CB = 4/(4 + 7) = 4/11;
то есть площадь треугольника ACL соствляет 4/11 площади АВС (тот же прием - высота общая - это расстояние от А до ВС, стороны относятся как 4/11).
Sacl = S*4/11;
Площадь MCLK равна разности площадей треугольников ACL и AMK
Smclk = Sacl - Samk = S*4/11 - S/9;
Ну, и осталось подставить S = 198.
Smclk = 198*4/11 - 198/9 = 18*4 - 22 = 72 - 22 = 50;
Поставь лучшее решение!
№1
ABCDA1B1C1D1 - параллелепипед.
Укажите вектор равный сумме ВЕТКОРОВ:
ВА + АС + А1D1 +СВ + DA + DC
т.к.вектор A1D1 = - CB и вектор DA = CB имеем
ВА + АС + А1D1 +СВ + DA + DC = ВА + АС - CB +СВ + CB + DC
тогда
ВА + АС - CB +СВ + CB + DC = ВА + АС + CB + DC
сумма векторов ВА + АС + CB = 0 т.е. начальная и конечная точки цепочки векторов совпадают. Остается DC
ответ ВА + АС + А1D1 +СВ + DA + DC = DC
№2
В треугольной призме ABCA1B1C1 основанием служит правильный треугольникa ABC, сторона которого равна 2 корня из 3-ёх см, О - середина АВ.
Найдите вектора I А1А - ОА - А1С I
А1А - ОА - А1С = А1А + АО + СА1
т.к. СА1 можно представить как СА1 = СА + АА1 то
А1А + АО + СА1 = А1А + АО + СА + АА1
т.к. А1А + АА1=0 то
А1А + АО + СА + АА1 = АО + СА = СО
СО - это высота правильного треугольника
по теореме Пифагора равна
ответ 3