1) Площадь поверхности складывается из площади боковых сторон и двух площадей оснований S = 2(a+b)*c + 2ab = 2(1+2)*3+2ab = 18+4 = 22
2) Апофема пирамиды - это высота боковой грани. Проведем вертикальную плоскость через вершину пирамиды параллельно стороне основания. В сечении получим равнобедренный треугольник с высотой b и основанием а. Боковые стороны треугольника - апофемы с. По теореме Пифагора: с=√[b²+(a/2)²]
3)Проведем вертикальную плоскость через высоту пирамиды и боковое ребро.
В сечении получим прямоугольный тр-к у которого один из катетов OE=10 - высота пирамиды, другой лежит в плоскости основания AE, а гипотенуза OA=10√2 - ребро.
У угла при основании ОАЕ - sin(OAE)=OE/OA=10/10√2 = √2/2.
ответ - угол при основании OAE=45 градусов
4)Полная поверхность пирамиды равна сумме площадей боковых сторон + площадь основания: S = 3(4*3)/2 + 2(√3*a²/4) = 18 + 8√3 ≈ 31,9
Объяснение:
Дано точки A(2;-3) B(4;2) C (-3;3) D (-5;1) Знайти координати точок , симитричним даним відносно
а) початку координат
для того чтобы найти координаты точки симметричной данной точке относительно начала координат, надо координаты взять с противоположным знаком
A(2;-3) A'(-2;3)
B(4;2) B'(-4;-2)
C (-3;3) C'(3;-3)
D (-5;1) D'(5;-1)
б) Если А(х₁;y₁) B(x₂;y₂) и точка С(х₃;y₃) симметрична точке A относительно B то В - будет середина отрезка AC
х₂=(х₁+х₃)/2 ; y₂=(y₁+y₃)/2
x₃=2x₂-x₁; y₃=2y₂-y₁
A(2;-3) M(1;1) A"(2*1-2;2*1+3) A"(0;5)
B(4;2) M(1;1) A"(2*1-4;2*1-2) A"(-2;0)
C(-3;3) M(1;1) A"(2*1+3;2*1-3) A"(5;-1)
D(-5;1) M(1;1) A"(2*1+5;2*1-1) A"(7;1)