1. Проводим прямую с карандаша и линейки. 2. Берем циркуль , ставим его в любую точку прямой и любым раствором проводим полуокружность, как на рисунке. 3. Переносим ножку циркуля с точку пересечения полуокружности и прямой и проводим вторую полуокружность. 4. Соединяем точки пересечения полуокружностей - это и будет перпендикуляр к прямой. Проверка - геометрическое место точек - точки равноудалены от концов отрезка, значит, они лежат на перпендикуляре к этому отрезку (или к прямой). А чертёжные инструменты для этого - карандаш, линейка и циркуль. Успехов!
Сделаем рисунок. Если из концов какого-нибудь наклонной опустим перпендикуляр на произвольную прямую, то отрезок прямой, заключённый между основаниями наклонной и перпендикуляра, называется проекцией отрезка на эту прямую. АН - проекция стороны АВ на АС. АН=4см СН - проекция ВС на АС. СН=6см АС=4+6=10см ВМ- медиана к АС АМ=МС=10:2=5см НМ - проекция ВМ на АС НМ=АМ-АН=5-4=1см СС1 -медиана к АВ КС- проекция медианы СС1 на АС КС=АС-АК В треуголнике АВН отрезок С1К параллелен ВН. АС1=ВС1 С1К - средняя линия треугольника АВН АК=КН=4:2=2см КС=10-2=8см АА1 медиана к ВС А1Е - средняя линия треугольника ВСН НЕ=СН:2=3см АЕ-проекция АА1 на АС АЕ=АН+НЕ=4+3=7см ответ: Проекция АА1=7см проекция ВМ=1см проекция СС1=8см
2. Берем циркуль , ставим его в любую точку прямой и любым раствором проводим полуокружность, как на рисунке.
3. Переносим ножку циркуля с точку пересечения полуокружности и прямой и проводим вторую полуокружность.
4. Соединяем точки пересечения полуокружностей - это и будет перпендикуляр к прямой.
Проверка - геометрическое место точек - точки равноудалены от концов отрезка, значит, они лежат на перпендикуляре к этому отрезку (или к прямой).
А чертёжные инструменты для этого - карандаш, линейка и циркуль. Успехов!