По условию АВ=ВС=АС=3; AD=BD=CD=2. DO - расстояние от точки D до плоскости АВС. Треугольники AOD=BOD=COD по гипотенузе и катету. АО=ВО=СО, О - точка пересечения медиан. АО=2/3 АМ, АМ= 3√3 /2, АО=√3. OD= ответ: 1
Объем параллелепипеда V=SH. Площадь основания - ромба S=a^2sinα=16*(2)^(1/2)/2=11,31. Меньшая диагональ призмы, проекция которой есть меньшая диагональ ромба d, и высота призмы H образуют прямоугольный треугольник, в котором H^2+d^2=D^2. Здесь D-диагональ призмы, наклоненная под углом 60 градусов. Поскольку d лежит в последнем треугольнике против угла 30 градусов, d=D/2, D=2d, D^2=4d^2. H^2=D^2 - d^2=4d^2 - d^2=3d^2, H=1,73d. Рассматривая треугольник, составляющий четвертую часть ромба в основании запишем: sin(45/2)=(d/2)/4,откуда d=8sin22,5=8*0,3827=3,06.Окончательно V=11,31*1,73*3,06=59,9.
Объем параллелепипеда V=SH. Площадь основания - ромба S=a^2sinα=16*(2)^(1/2)/2=11,31. Меньшая диагональ призмы, проекция которой есть меньшая диагональ ромба d, и высота призмы H образуют прямоугольный треугольник, в котором H^2+d^2=D^2. Здесь D-диагональ призмы, наклоненная под углом 60 градусов. Поскольку d лежит в последнем треугольнике против угла 30 градусов, d=D/2, D=2d, D^2=4d^2. H^2=D^2 - d^2=4d^2 - d^2=3d^2, H=1,73d. Рассматривая треугольник, составляющий четвертую часть ромба в основании запишем: sin(45/2)=(d/2)/4,откуда d=8sin22,5=8*0,3827=3,06.Окончательно V=11,31*1,73*3,06=59,9.
Треугольники AOD=BOD=COD по гипотенузе и катету. АО=ВО=СО, О - точка пересечения медиан. АО=2/3 АМ, АМ= 3√3 /2, АО=√3.
OD=
ответ: 1