Объяснение:
7)
<АВС=180°-<А*2=180°-30°=150°
Н=АВ/2=2/2=1 ед высота треугольника опущенная на ВС.
S=1/2*BC*H=1/2*2*1=1ед²
ответ: 1ед²
13)
S=MN²√3/4=4²√3/4=4√3 ед²
ответ: 4√3 ед².
14)
ВС=Р/3=6/3=2 ед сторона треугольника.
S=BC²√3/4=2²√3/4=√3 ед²
ответ: √3 ед²
15)
АВС- равносторонний треугольник.
S=AC²√3/4=8²√3/4=64√3/4=16√3 ед²
ответ: 16√3 ед²
19)
<В=180°-2*75°=30°
S=1/2*BC²*sin<B=1/2*2²*1/2=1ед²
ответ: 1ед²
20)
∆АВС- равносторонний.
S=a²√3/4 ед²
ответ: а²√3/4 ед²
21)
По формуле Герона.
р=(2*LM+KM)/2=50/2=25
S=√(25(25-13)(25-13)(25-24)=√(25*12*12*1)=
=5*12=60ед²
ответ: 60ед²
один из острых углов через а , второй тогда 90-а.
биссектрисса делит треугольник на два.
теорема синусов для обоих треугольников.
х/sin a = 15/ sin 45.
x/ sin(90-a) = 20/ sin 45
sin 90-a= cos a
откуда
15 sin a = 20 cos a
tg a = 4/3
гипотенуза 35 катеты 28 и 21
пифагоров треугольник 3 4 5 с коэффициентом подобия 7.
опустим высоту на гипотенузу.
если tg a = 4/3 , то sin a = 4/5 cos a = 3/5.
опять же из пифагорова треугольника.
гипотенуза поделиться высотой на отрезки
21 * cos a = 12.6
28* cos(90-a)= 28* sin a= 22.4