Боковая сторона равнобедренного треугольника делится точкой прикосновения вписанного круга в соотношении 3 к 4 , считая от вершины угла при основе треугольника найдите боковую сторону треугольника, ели его основа равняется 12 см
Площадь равнобедренной трапеции по основаниям и высоте находится по формуле: S= (a+b) / 2 × h, где a и b - длины оснований, h - высота h= 3 , a=10, b=3 S= (10+2) /2 × 3 S=6×3 = 18
Для нахождения периметра мы должны сначала найти длину боковой стороны трапеции. Так как трапеция равнобедренная, если опустить высоты из обоих тупых углов к противоположному основанию, мы получим РАВНЫЕ прямоугольные треугольники справа и слева и прямоугольник в середине. Нам нужно вычислить гипотенузу треугольников - это и будет боковая сторона трапеции. Мы знаем длину одного из катетов : h=3, длина второго катета будет равняться разности оснований, делёной на 2. (10-2)/2=4. Дальше вычисляем гипотенузу по теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов: √( 3²+4²)=√25=5 - длина боковой стороны. складываем боковые стороны и основания - получаем периметр. P= 10+2+5+5 =22
Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.(теорема) dа и dс - отрезки касательных, проведенных к большей окружности из точки d. => da=dc. dв и dс - отрезки касательных, проведенных к меньшей окружности из точки d.=> db=dc. два отрезка, равные третьему, равны между собой. => аd=bd ad: bd=1: 1 из чего следует аd: ab=1/2 и т.d середина ав.
Глупой