М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nickhoffmanru
Nickhoffmanru
11.09.2020 15:58 •  Геометрия

знайти радіус кола вписаного у правильний многокутник зі стороною 30см якщо радіус кола описаного навколо цього многокутника дорівнює 10√3​

👇
Открыть все ответы
Ответ:
Alinazonova
Alinazonova
11.09.2020

Объяснение:

Треугольник FAC и его ортоцентр - это центр вписанной окружности треугольника ABC

Объяснение: Автор задания не совсем удачно обозначил  центры вписанной и описанной окружностей. Обычно центр вписанной окружности  - это точка I, центр описанной - точка O.

С разрешения автора буду считать, что центр вписанной окружности - это I. Кстати, картинка не совсем удачная. Дело в том, что, как известно, на одной прямой (прямой Эйлера) находятся центр O описанной окружности, центроид (то есть точка G пересечения медиан)  и ортоцентр H. Центр же вписанной окружности лежит на этой прямой только если треугольник равнобедренный. Перехожу к решению.

Каждый из углов тр-ка ABC будем обозначать одной буквой - A, B, C. Значок градуса будем опускать. Из равнобедренного тр-ка EAC имеем: угол ECA=90-(A/2); из равноб. тр-ка ACD имеем: CAD=90-(C/2). Поэтому AFC=(A+C)/2. I лежит на биссектрисе угла BAC, то есть IAC=A/2, откуда DAI=DAC-IAC=90-(A+C)/2. То есть AFC+FAI=90, откуда AI перпендикулярно FC. Аналогично CI перпендикулярно  AF. Следовательно, центр вписанной окружности треугольника ABC является по совместительству - ортоцентром треугольника FAC.

4,8(16 оценок)
Ответ:
мир285
мир285
11.09.2020

Доказать подобие треугольников А1СВ1 и АВС.

сделаем построение по условию

треугольники ACA1 и ВСВ1 - подобные по ПЕРВОМУ признаку подобия (по двум углам)

<AA1C=<BB1C=90 град

<ACA1=<BCB1 -вертикальные

следовательно , соответственные стороны относятся

СA1 / CB1 =CA / CB = k1   -коэффициент подобия для треугольников ACA1 и ВСВ1

отношение можно записать по-другому

СA1 / CA = CB1 / CB = k2  -коэффициент подобия для треугольников А1СВ1 и АВС.

т.е. треугольники А1СВ1 и АВС подобны по ВТОРОМУ признаку подобия 

(если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны)

пропорциональные стороны СA1 / CA = CB1 / CB

<A1CB1 = <ACB --вертикальные

доказано подобие треугольников А1СВ1 и АВС.


Дан треугольник авс с тупым углом с, проведены высоты аа1 и вв1. доказать подобие треугольников а1св
4,8(76 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ