Найти точки пересечения окружности и прямой, заданных уравнениями
x^2 + y^2 = 1 и y = 3x + 1 . Вложение номер 1
Написать уравнения прямой, проходящей через точки (2 ; 4) и (-2 ; 4,5) .—не знаю
Найти точки пересечения прямых -x + y - 2 = 0 и 6x + 8y +7 = 0. Вложение номер 2
Написать уравнение окружности с центром в точке M(2 ; -1) и радиусом 3. —не знаю
Две стороны треугольника равны 17 см и 25 см. Высота делит третью сторону на отрезки, разность которых равна 12 см. Найти периметр треугольника.
Обозначим часть стороны, которая образована высотой и углом, за х. Тогда вторая часть - 12+х
Составим два уравнения по т Пифагора.
Х^2+h^2=17*17
(12+X)^2 +h^2=25*25
Теперь сделаем из этого одно уравнение
Х^2+25*25-(12+X)^2=17*17
X^2-144-24X-X^2=17^2-25^2
-144-24x=(17-25)(17+25)
144+24x=336
24x=192
x=8
тогда вся сторона у нас равна 2x+12=16+12=28 см
Периметр равен 17+25+28=70см
По неравенству треугольника сумма двух сторон должна обязательно быть больше третьей. Пусть третья сторона равна х>0. Тогда получаем следующие неравенства
х < 3,14 + 0,6
3,14 < x + 0,6
0,6 < x + 3,14
Так как x > 0, то третье неравенство выполнено для любого положительного х.
Из первого неравенства получаем, что х < 3,81, а из второго неравенства получаем, что 2,54 < х. Значит
2,54 < х < 3,81.
Так как в условии сказано, что длина третьей стороны является целым числом, то задачу удовлетворяет только х = 3.