1) Если внешний угол при вершине В равен 111градусов, то внутренний как смежный угол равен 180-111=69 град. Т.к. треугольник равнобедренный, то углы В и А равны. Следовательно, если сумма всех углов треугольника равна 180градусов, угол при вершине С = 180 - (69+69) = 42 градуса.
2) аналогично. (180-20):2= 80, т.е. по 80 градусов угол В и угол А.
3) пусть х - коэффициент пропорциональности. тогда 2х+3х+7х=180. х=15 градусов. Меньший угол тогда 2 умножить на 15 = 30градусов
4) аналогично. х+2х+4х+8х=360. х=24 грудса, т.е. меньший угол.
5) сумма углов параллелограмма = 360градусов. т.к. диагональ разделяет угол при вершине параллелограмма на 2 части, то этот угол будет равен 61+47 = 108градусов.Другой угол параллелограмма будет равен = (360 - (2·108))÷2 = 73 градуса
6) пусть меньшее основание х, тогда большее равно х+16. По свойству средней линии трапеции: 2·18 = х + (х+16), отсюда х = 10. ответ: 10.
По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника.
Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC =>
∠ECM = ∠MCD = ∠EDH = ∠HDC
Тогда ΔHDC = ΔMCD по стороне и двум углам:
(CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC)
Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC =>
эти треугольники равны по стороне и двум углам