Доказывать будем опираясь на признак параллелограмма (если у четырехугольника противолежащие стороны попарно параллельны, то это параллелограмм). Доказательство: 1) тр АВЕ = тр СДК (по двум сторонам и углу м/д ними), т к в них АВ=СД (АВСД- пар-мм) АЕ=СК ( по условию) уг КСД= уг ЕАВ как внутр накрестлежащие при AB||СД и секущ АС следовательно ВЕ=ДК 2) тр АЕД = тр СКВ (по двум сторонам и углу м/д ними), т к в них АД=СВ (АВСД- пар-мм) АЕ=СК ( по условию) уг ЕАД= уг КСВ (как внутр накрестлежащие при AД||СВ и секущ АС следовательно ВК=ДЕ 3) ЕВКД - параллелограмм по признаку из пп. 1;2
Пусть H - середина ABCD, MH - высота пирамиды MABCD,
MH - медиана, биссектриса и высоты треугольника DBM => H - середина DB=> HL - средняя линия треугольника DMB => 2LH=DH;
AH перпендикулярно BD ( как диагонали квадрата),
AH перпендикулярно МH ( т.к. МH - высота пирамиды)
DB пересекает MH в точке H => AH перпендикулярна плоскости DMB, значит угол HLA = 60° (по условию),
CA = √(CB^2+AB^2)=6√2 (по теореме Пифагора)
HA=1/2CA=3√2
LM=AH/tg60° = √6
DM=2LM=2√6
MH=√(DM^2-DH^2)=√6 (по теореме Пифагора)
ответ: √6