Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
1. Сумма углов правильного n-угольника равна 180*n-360=1800( эта формула следует из того, что правильный n-угольник состоит из n треугольников, сумма внутренних углов треугольника равна 180, но при этом надо вычесть все углы находящиеся в вершинах треугольников) , т. е. n=12, тогда внутренний угол равен 1800/12=150, а внешний 180-150=30 ( либо , (1800-2)*180 / 1800 равно 179,8 - это один угол из н-угольника, его внешний угол равен 180-179,8 равно 0,2градуса) 2. ответ Диагональ правильного четырехугольника (квадрата) = диаметру окружности. D = V(2*8^2) = 8V2 => R=4V3 R = aV3/3 = 4V3 a = 4*3 = 12 - сторона треугольника S = a^2*V3/4 = (12)^2 * V3/4 = 36V3 - площадь
вот думаю тут все понятно