∠DAB=∠DBA=0,5*∠CAB=0,5*∠CBA (т.к. AE и BF биссектрисы и ∠CAB=∠CBA)
Пусть ∠DAB=∠DBA=x:
180°-100°=2x
80=2x
x=40
∠DAB=∠DBA=40°
40°=0,5*∠CAB=0,5*∠CBA
∠CAB=∠CBA=80°
∠ACB=180°-∠CAB-∠CBA=180°-80°-80°=20°
⸻⸻⸻⸻⸻⸻⸻⸻
2)
⸻⸻⸻⸻⸻⸻⸻⸻
∆ABO, ∆COD – прямоугольные (т.к. ∠BAO=∠CDO=90°)
AO=OD (т.к. O – середина отрезка AD)
Если бы AB=DC, то ∆ABO=∆COD (по двум катетам) ⇒ OB=OC, но точка B может находиться на любом расстоянии от точки A, и точка C может находиться на любом расстоянии от точки D, поэтому доказать это невозможно.
Обозначим стороны треугольника 3х, 4х и 5х, тогда периметр 3х + 4х + 5х = 12 х, что по условию равно 48 см Составляем уравнение 12х = 48 х=4 Тогда стороны 3·4=12 см, 4·4=16 см, 5·4= 20 см Проверка, периметр 12+16+20= 48 см. Стороны нового треугольника являются средними линиями данного треугольника. Средняя линия треугольника параллельна стороне треугольника и равна его половине. Значит стороны нового треугольника в два раза меньше сторон данного : 6 см, 8 см, 10 см ( см. рисунок) Периметр нового треугольника 6 + 8 + 10 =24 см ответ. 24 см
Обозначим стороны треугольника 3х, 4х и 5х, тогда периметр 3х + 4х + 5х = 12 х, что по условию равно 48 см Составляем уравнение 12х = 48 х=4 Тогда стороны 3·4=12 см, 4·4=16 см, 5·4= 20 см Проверка, периметр 12+16+20= 48 см. Стороны нового треугольника являются средними линиями данного треугольника. Средняя линия треугольника параллельна стороне треугольника и равна его половине. Значит стороны нового треугольника в два раза меньше сторон данного : 6 см, 8 см, 10 см ( см. рисунок) Периметр нового треугольника 6 + 8 + 10 =24 см ответ. 24 см
1) 80°, 80°, 20°
2) Доказать невозможно
Объяснение:
Сумма всех углов треугольника – 180°
Биссектриса делит угол пополам
1)⸻⸻⸻⸻⸻⸻⸻⸻
∠DAB=∠DBA=0,5*∠CAB=0,5*∠CBA (т.к. AE и BF биссектрисы и ∠CAB=∠CBA)
Пусть ∠DAB=∠DBA=x:
180°-100°=2x
80=2x
x=40
∠DAB=∠DBA=40°
40°=0,5*∠CAB=0,5*∠CBA
∠CAB=∠CBA=80°
∠ACB=180°-∠CAB-∠CBA=180°-80°-80°=20°
⸻⸻⸻⸻⸻⸻⸻⸻
2)⸻⸻⸻⸻⸻⸻⸻⸻
∆ABO, ∆COD – прямоугольные (т.к. ∠BAO=∠CDO=90°)
AO=OD (т.к. O – середина отрезка AD)
Если бы AB=DC, то ∆ABO=∆COD (по двум катетам) ⇒ OB=OC, но точка B может находиться на любом расстоянии от точки A, и точка C может находиться на любом расстоянии от точки D, поэтому доказать это невозможно.
⸻⸻⸻⸻⸻⸻⸻⸻