Первая задача на применение теоремы Пифагора. В ней есть перпендикуляр, равный 6см и проекция наклонной, равная 8см, наклонная ищется так √(6²+8²)=√(36+64)=√100=10/см/.
Решение второй задачи сводится к следующему.
М- середина АС, значит, ВМ- медиана ΔАВС, но она проведена к основанию АС равнобедренного треугольника АВС, значит, является и высотой, т.е. ВМ⊥АС, по условию МQ⊥ВМ.
Значит, прямая ВМ перпендикулярна двум пересекающимся прямым плоскости АQC, конкретнее, MQ и AС,
и по признаку перпендикулярности прямой и плоскости, т.е.
если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости.
ВЫВОД. ВМ⊥ (АQC), доказано.
PS рисунком 19 я только что воспользовался, решая эту же задачу, см. ниже ответ.
1.
Площадь квадрата:
S=a² S=7²=49(см²)
2.
Площадь прямоугольника:
S=a*b S=3*14=42 (дм²)
3.
S=a² 8=a² a=√8=√(4*2)=2√2) (см)
4.
Обозначим одну сторону прямоугольника за (х), тогда вторая сторона равна: 5*х=5х
S=a*b
12500=x*5x
5x²=12500
x²=12500:5
х²=2500
х=√2500=50(м)- ширина прямоугольника
5*х=5*50=250(м) -длина прямоугольника
Р=2*(a+b) Р=2*(50+250)=2*300=600(м)
5.
Площадь прямоугольника равна S=a*b
S=3,4*4,8=16,32 (м²)
Площадь кафельной плитки:
S=a²
а=20см=0,2м S=0,2²=0,04 (м²)
Количество кафельных плиток для, необходимых для облицовки:
16,32 : 0,04=408 (плиток)